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In the 21st century, digital technologies like artificial 
intelligence (AI) and machine learning are reshaping 
many sectors, including the environmental sciences. 

As these tools evolve, their potential to address 
environmental challenges becomes increasingly 
apparent. Yet while there are many benefits, we must 
also acknowledge the challenges they present.

Digital technologies offer unprecedented capabilities in 
environmental monitoring, analysis and management. 
Machine learning algorithms can analyse vast datasets 
to identify trends and anomalies in environmental data, 
and remote sensing technologies coupled with AI can 
provide real-time ecosystem monitoring, offering the 
potential for a rapid response to environmental threats. 
AI-driven agricultural practices can optimise water 
usage and minimise pesticide application, promoting 
sustainable farming.

However, the integration of digital technologies into the 
environment sector is not without its challenges. One 
significant concern is the environmental footprint of the 
technologies themselves. The energy consumption of data 
centres required for AI and machine learning processing 

is substantial and growing. There is also a risk of 
over-reliance on technology at the expense of traditional, 
community-based knowledge and practices. Indigenous 
and local communities have long been environmental 
stewards, possessing invaluable knowledge that should 
complement digital advancements, not be overshadowed 
by them. A holistic approach that integrates modern 
technology with traditional wisdom is essential for 
sustainable environmental management.

Digital technologies hold great promise for addressing 
some of the most pressing environmental challenges 
of our time. Their potential to revolutionise climate 
modelling, resource management and ecological 
monitoring is immense. But their design and outputs 
need human guidance to ensure they remain on track 
to tackle the issues we need them to address. It is 
vital, therefore, to approach the integration of digital 
technologies into our systems and processes with 
awareness – balancing innovation with sustainability 
and ensuring that technological advancements 
enhance, rather than replace, traditional environmental 
stewardship practices.

Harnessing digital technologies 
for environmental stewardship

Editorial: This edition of environmental SCIENTIST was guest edited by ChatGPT, an AI chatbot with 
natural language processing. It suggested authors and themes for several of the articles included. 
ChatGPT also wrote this editorial. This was done through a short prompt, and edits were made for 
accuracy and readability. A full discussion of our motivations for doing this and reflections on the 
process are available in an online interview with the human editors of environmental SCIENTIST at: 
the-ies.org/chatgpt-editor
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The future 
of clean 
technology

Sam Goodall and Sylvie Russell  
consider the complex relationship 
between environmental 
technologies, ethics and the 
marketplace.

We have reached a moment in time in which 
novel technologies and artificial intelligence 
(AI) are rapidly developing. With these 

developments, ultimately, comes the imperative to 
establish new rules and regulations. It goes without 
saying that this can be a difficult journey. One of the core 
responses to challenges like these is working together 
to establish frameworks for uplifting and scrutinising 
new technologies.

TECHNOLOGY AND ETHICS
The agenda for new clean technologies varies widely 
depending on the kinds of governance and policies that 
apply nationally and internationally. Currently, it is not 
clear in which political direction Europe is moving. In 
light of these geopolitical differences, looking for new 
and improved ways of working that respond to this is 
essential, as is ensuring that investors are dedicating 
their time, money and resources in the right places. 
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In certain aspects of the green technology industry, there 
are risks embedded in the transition to automation. This 
is seen in sub-sectors such as agritech, where there is 
naturally some replacement of manual jobs through 
advances in robotics. However, claims that this will 
be a widespread effect of the development of clean 
technology in general are often exaggerated, and AI and 
other digital technologies can support decarbonisation 
of energy systems, particularly in relation to microgrids 
and distribution networks for energy. AI or computer 
modelling can handle vast quantities of data compared 
to how we might have handled them in an analogue 
fashion, and this is where AI can make its most 
promising contribution to environmental sector issues: 
whole-system analysis and intervention.

However, one of the more immediate and visible 
environmental risks around accelerating AI deployment 
is the ever-increasing use of servers and data centres, and 

For this to happen, there needs to be a paradigm shift. This 
needs to take the form of ecosystem engagement rather 
than just open innovation; an ecosystem engagement, by 
its nature, facilitates interaction with different parts of 
the clean technology sector’s ecosystem. There are five 
key elements to the ecosystem: entrepreneurs, investors, 
universities, public sector and corporates, which are 
all required for a functioning innovation ecosystem. 
Others might include companies or the media, but 
ultimately the ecosystems are effective once the entire 
set of participants is working productively together. 

If cohesive international policies do not exist, we 
must consider how clean technology innovation 
and development might be regulated. The market 
is increasingly seeing investors who are specifically 
seeking out startups that effectively monitor where their 
raw materials are coming from, and the complexities of 
their impact on the environment.

full potential. While funding is also part of this story, 
there is also a strong sense of system inertia in utilising 
technologies to the best of our advantage. The traditional 
problem-solving paradigm does not best equip people in 
the environmental sector to handle the implementation 
gap, as a complex multi-stakeholder problem involves 
effective multi-stakeholder system solutions.

Regulation and implementation of policies relating to 
new technologies must also remain cognisant of the 
raw materials that need to be extracted to enable their 
use. The ethical implications of sourcing raw materials 
from countries that do not have satisfactory labour 
regulations or adequate supervision are fraught, and 
this is an increasing concern for both investors and 
consumers in the clean technology space. Guidelines 
that consider both the environmental and social impacts 
of new technologies, and that work towards better ways 
of accelerating development, are sorely needed.

There are also other areas of contention in the clean 
technology space; specifically, different ethical standards 
or viewpoints. A solid, pluralistic approach should give 
new and different technologies the space to flourish. 
If a new technology comes to light and has credible 
climate-positive claims, we should support exploring 
its potential.

SYSTEMS CHALLENGES
One of the biggest barriers in the development of clean 
technology is the implementation of relevant policies 
to support innovation and to regulate the use of novel 
products. The gap between intention and action plays out 
visibly in the sector. All kinds of policy ambitions, claims, 
targets and objectives exist, but the true challenge arises 
in bringing together different stakeholders to achieve 
these goals. We have had access to the appropriate 
technologies to achieve specific environmental goals 
for years – yet the technologies are rarely used to their 
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the energy (and significant amount of water) that powers 
them. In the global race to lead AI development, there 
is significant investment in server infrastructure, 
yet even in recent years this kind of expansion has 
been unprecedented. While some companies, such 
as Bloomberg and Nvidia, are beginning important 
research into the environmental implications of AI and 
energy consumption, we need greater understanding 
of the complexities and trade-offs of these risks 
in relation to the benefits of these fast-evolving 
technologies.

CLEAN TECHNOLOGY NETWORKS
Successful innovat ion in technolog y for 
environmental purposes is essential, but there are 
limited opportunities for cross-pollination of ideas 
and cross-disciplinary work in the sector. Cambridge 
CleanTech (CCT) is an innovation network, which 
was established 13 years ago. As a company, CCT 
is primarily focused on the functional economic 
area of the technology in the Cambridge technology 
cluster, which has had a long history of expertise 
in life sciences and the digital and IT sectors. There 
are various network organisations that support and 
bring people together around these domains, but 
CCT’s goal was to specifically create a pipeline of 
emerging technologies. In its early phase, we quickly 
realised that there was no critical mass of emerging 
technology and commercial activity in the two 
dominant sectors of climate and clean technology; 
six years ago, CCT began to network across the UK 
and internationally.

Alongside its sister organisation, Oxfordshire Green 
Tech, which follows the same kind of business model 
and innovation network proposition, CCT has extended 
its network across northern Europe, the Netherlands, 
Scandinavia, northern France and parts of Germany. 
CCT’s mission and theory of change are that there are 
nascent technologies that can have a positive impact 
on climate change and the environment, which need 
investment, support, and scaling partners, something 
CCT seeks to facilitate and provide. 

One of CCT’s core roles is to help organisations 
navigate the clean technology ecosystem, while 
propagating the ecosystem itself in positive ways. 
For example, CCT is soon hosting its annual flagship 
investor event: CleanTech Venture Day. This year, it 
is aligned with a new initiative called the Climate 
Tech Super Cluster, which defines a functional 
economic area within about four hours of London, 
including Birmingham, Manchester, Edinburgh and 
Glasgow, alongside Paris, Amsterdam and Cologne. 
The underlying goal for this event is to take the CCT 
model, which has been successful in the last 10 years, 
and scale it up, ultimately creating a new Silicon Valley 
for climate tech.

Something else that CCT has explored for this purpose 
is the need for more structured and integrated 
facilitated workshops. While this is by no means a 
novel approach, and at first glance does not appear to 
be particularly revolutionary or exciting, it is one of 
the best ways to allow embedded systems thinking – 
from design of products and development to securing 
investment.

CCT has therefore worked to pioneer a specific kind 
of systems thinking in this area, called ‘embodied 
cognition’. This involves bringing people together 
from different professions and disciplines in a 
physical space to co-design solutions for particular 
issues. While this is ultimately a basic approach, by 
implementing it, CCT brings together, for example, 
people who work in start-ups and in distribution 
and network organisations, investors and university 
employees. 

Naturally, these professionals speak different 
languages and might have an entirely different 
vocabulary when discussing challenges and solutions, 
but bringing them together physically to approach a 
solutions-focused task allows them to build a shared 
model and understanding of what they are respectively 
aiming to achieve. This is a structured and positive 
kind of facilitation, and demonstrates that multi-sector, 
multiagency network events and workshops are a truly 
effective way of driving innovation. 

Revisiting our overall mission, this method follows 
the ecosystem-first approach, with an emphasis on 
curating a meeting that is representative of different 
professions and enabling others to understand 
new ways of thinking that go beyond their own 
understanding of the problem, which can be limited 
by siloed approaches. By focusing on framework 
improvement and rejecting linear and narrow 
problem-solving, we can create change that is informed 
by a broader cross-section of professionals.

CLEAN TECHNOLOGY: PAST, PRESENT, FUTURE
It is unsurprising that clean technologies spend much 
of their lifespan in the potential space, before they 
have attained the necessary traction, funding and 
interest to fully materialise in the present. 

One company that CCT works with has developed 
an AI-designed process for electrical motors, which 
could allow up to 90 per cent energy efficiency, benefits 
which have come directly from the AI design aspect. 
AI enables this company to produce multiple design 
iterations and can respond to specific queries that 
relate to motor efficiency or longevity. If we have a 
90 per cent energy efficiency improvement in these 
electric motors, this could in theory be applied to 
every single electric motor in the world, with an 

Sam Goodall is Chief Executive Officer of Cambridge 
Cleantech, the UK's first clean-tech innovation network 
and a leader of climate innovation in Europe. With over 20 
years’ experience in project management, regeneration and 
economic development, Sam builds and connects national 
and international innovation ecosystems for climate-positive 
technology. 
 
Sylvie Russell is the Chief Operating Officer at Cambridge 
Cleantech and has over 20 years of experience in senior roles 
in international companies, from small and medium-sized 
enterprises and charities to large multinational brands. She 
manages the Cleantech Venture Day, a flagship pitching event 
and a meeting place for innovators, investors, large enterprises 
and economic development partners. 
 

 https://www.cambridgecleantech.org.uk/

unprecedented positive environmental impact. 
Without AI, a development such as this may not have 
been possible – or, at least, it would not be anywhere 
near as rapid.

CONCLUSION
As demonstrated by the spread and depth of articles 
in this issue, embracing digital technologies in the 
environmental sector comes with both risk and enormous 
opportunity. Through facilitating cross-disciplinary 
workshops, allowing new ventures the space to 
bring their innovations to market, and embracing the 
possibilities of AI and machine learning in the sector 
we can support a just transition to a future defined by 
exciting new pathways in clean technology.
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Bárbara Cardeli and Bianca 
Fazio Rius set out how a new 
generation of models can more 
accurately represent hyperdiverse 
environments.

Studying the Amazon rainforest can be tricky. It 
harbours an incredible diversity of plant species, 
with many still awaiting discovery and formal 

description. Although the Amazon is often described as 
a ‘green carpet’, it is far from homogeneous; rather, it is 
composed of a diverse mosaic of vegetation formations.1  
The Amazon’s complexity makes it one of the most 
important ecosystems in the world, and one which 
provides an immense number of globally significant 
ecosystem services.2,3 This same diversity and complexity 
make it incredibly challenging to study and understand.

The CAETÊ algorithm: 
assessing vegetation 
and climate change  
in the Amazon
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Simultaneously, the Amazon faces the challenge of 
resisting, adapting to and recovering from the numerous 
effects of climate change that have affected it, which 
are predicted to continue and to potentially worsen.4  
According to the latest Assessment Report (AR6) by the 
Intergovernmental Panel on Climate Change, climate 
change is already affecting ecosystems, including the 
Amazon, and human societies.5 This underscores the 
urgency to comprehend these processes and to pursue 
solutions to mitigate their effects.

VEGETATION MODELS
To improve our understanding of earth and climate 
sciences, algorithms known as vegetation models have 
become increasingly employed to investigate the impact 
of climate change on various aspects of the biosphere. 
These models are excellent tools that combine technology, 
ecology and climatology to explore urgent issues related 
to climate change. However, one of the biggest challenges 
for these models is the complexity of representing the 
vast diversity of plant strategies found in hyperdiverse 
ecosystems such as tropical forests, given, among other 
aspects, the computational limitations inherent in any 
algorithm.6,7,8 

Researchers at the University of Campinas in São Paulo, 
Brazil, have developed the CAETÊ vegetation model to 
better represent the plant diversity found in tropical 
forests.9 This algorithm is designed to investigate the 
effects of climate change, such as reduced precipitation 
and drought events and increased carbon dioxide (CO2) 
concentrations, with a focus on the Amazon rainforest 
and to incorporate plant diversity.

DIVERSITY WITHIN VEGETATION MODELS
CAETÊ stands for carbon and ecosystem functional 
trait evaluation model. It also means ‘big forest’ in 
Tupi-Guarani – one of the most important language 
families in South America, which encompasses 
various Indigenous languages, the most representative  
being Guarani.

CAETÊ is an innovative trait-based dynamic vegetation 
model (DVM) designed to simulate vegetation dynamics 
and their associated ecophysiological processes through 
measurable plant characteristics (see Box 1). These plant 
characteristics, known as functional traits, are key to 
understanding how individual plants perform within 
their ecosystems. The focus on functional traits is what 
classifies CAETÊ as a specialized subset of DVMs known 
as trait-based models.

Unlike conventional vegetation models that categorize 
plants into broad plant functional types (PFT), trait-based 
models like CAETÊ provide a more nuanced and detailed 
representation of plant functional diversity in which the 
entities simulated are life strategies rather than PFTs. 
Trait-based models enhance our ability to understand 

BOX 1. GLOSSARY OF TERMS

Plant functional types. Plant functional types 
(PFTs) refer to a grouping or classification system 
used by ecologists and climatologists to categorize 
plant species based on their similar functions and 
performances in an ecosystem. PFTs simplify the 
complexity of plant diversity by grouping plants 
into categories that share common functional 
characteristics, such as leaf type (e.g. needle-
leaved, broad-leaved), growth form (e.g. tree, shrub, 
grass), phenology (e.g. evergreen, deciduous) and 
resource acquisition strategies (e.g. nitrogen fixation, 
mycorrhizal associations).10,11

Functional traits. A functional trait is a morphological, 
physiological, phenological or behavioural feature 
of an organism that influences its performance and 
fitness, determining its response to environmental  
factors and its effects on ecosystem processes.12,13,14,15,16,17,9 
In plants, examples of functional traits include leaf 
size, plant height (morphological), photosynthetic rate, 
water use efficiency (physiological), flowering time and 
leaf-fall timing (phenological).

Functional diversity. Functional diversity quantifies 
the functional traits present in an ecological 
community or system, determining how that 
system functions and operates. As a component of 
biodiversity, functional diversity encompasses the 
range of these traits within an ecosystem, highlighting 
the different roles organisms play and their 
contributions to ecosystem processes.18,19,20,21,22,16,23,9

Life strategies. In functional ecology this refers 
to the functional traits, behaviours and resource 
allocation patterns that organisms exhibit to survive 
and reproduce in their environment.24,25

Net primary productivity. This is the rate at which 
primary producers (such as plants) store energy as 
biomass in an ecosystem. It is calculated by subtracting 
a plant’s energy for metabolism and maintenance 
(respiration) from the total energy captured during 
photosynthesis (i.e. gross primary productivity).

how diversity determines ecosystem processes and 
properties. Beyond this, the approach is more precise 
in simulating vegetation responses to environmental 
changes under different biogeochemical variables. 
Importantly, such models allow the investigation of 
impacts of functional diversity and functional traits on 
forest responses to these changes, which is not feasible 
in non-trait-based models.

As a vegetation model, CAETÊ uses a series of 
mathematical equations to simulate a plant’s 
ecophysiology. To incorporate climatic conditions, 
representative equation parameters are used, 
such as for as solar radiation, temperature, relative 
humidity, precipitation rates and atmospheric CO2 
concentrations. By accounting for these factors, CAETÊ 
can effectively simulate the impact of climate change on  
vegetation dynamics.

Using CAETÊ, researchers can estimate a wide range of 
ecosystem processes. For example, the model can simulate 

photosynthesis rates – crucial for understanding plant 
growth and carbon assimilation. Furthermore, the model 
can evaluate biomass accumulation and distribution, 
carbon sequestration, and the storage capabilities of 
different ecosystems.

Overall, CAETÊ – and trait-based models more widely 
– represent a powerful tool for ecological and climate 
research, enabling scientists to explore and predict 
the effects of environmental changes on vegetation 
and ecosystem functioning. Its trait-based approach 
offers a detailed and accurate framework for studying 
the complex interactions between plants and their 
environment, ultimately contributing to a better 
understanding of global ecological and climatic patterns 
(see Figure 1).

AMAZON BASIN CASE STUDY USING CAETÊ
To understand one of the main projected effects of 
climate change in the Amazon (the increase in severity 
and occurrence of drought) an experiment was conducted 
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using the CAETÊ model.9 A precipitation reduction of 
50 per cent was applied across the entire Amazon basin. 
The results showed significant changes in ecosystem 
functioning and functional diversity, including an 
unexpected increase in the latter and changes in plant 
trait composition, indicating a reorganization of the plant 
community in response to the new climatic conditions.

 Figure 1. Schematic diagram of the CAETÊ model and its trait-based approach. From the initial plant functional trait 
ranges (the axis of the hypervolume), values are uniformly sampled and combined to create hundreds of thousands 
of what we define as plant life strategies (PLSs). The set of all created PLSs composes a hypervolume that represents 
the potential functional trait space in which each point inside the volume is a unique combination of functional trait 
values. Environmental filtering, the trade-offs between functional traits and the physiological processes determine the 
performance of a PLS (abundance) and whether it survives (positive carbon balance) or dies and is excluded from the 
grid cell. Then, the grid cell is filled as a mosaic of PLSs, in which each occupies an amount of space proportional to its 
abundance, calculated from the PLSs’ relative contribution to the total carbon storage in that grid cell. From the PLSs’ 
occupation, the ecophysiological variables are updated and return to the model for iteration. This modelling framework 
allows us to assess the model’s results regarding biogeochemical variables and trait distribution and, therefore, the 
different components of functional diversity. (Source: Modified from Rius et al., 20239) 

Notes: aNPP: net primary productivity; bC Leaves: amount of carbon allocated to leaves; cC Roots: amount of carbon 
allocated to fine roots; dC Wood: amount of carbon allocated to wood.

Specifically, life strategies that invest more carbon in root 
systems were favored and an increase in root abundance 
was seen, as roots are crucial for the uptake of the most 
limiting resource in this scenario: water. Because an 
investment in roots would limit the carbon allocation to 
other organs, a decrease in carbon investment in woody 
tissues, such as stems, was seen. Due to its structural 

 Figure 2. Density distributions of functional traits using the trait probability density method for the trait-based 
approach.16 The curves correspond to the probability density distribution of trait values across the Amazon basin. Each 
boxplot represents the median value and variance for each trait under each climatic condition. The boxes extend from the 
first to the third quartiles, and the whiskers extend from the minimum and maximum data. The outliers are shown as grey 
dots. The orange curves/boxplots represent the results with the applied low-precipitation scenario, and the blue curves/
boxplots represent the results concerning the regular climate conditions. Plots (a)–(c) show the results concerning the 
allocation traits, and plots (d)–(f) display the results for the residence time traits. (Source: Rius et al., 20239)
Note: aNPP: net primary productivity.

14 | environmental SCIENTIST |  June 2024 June 2024  | environmental SCIENTIST | 15

FEATURE FEATURE



and physiological characteristics, the stem has the 
greatest potential for carbon accumulation, in addition 
to being a large supporting tissue. Thus, the reduction in 
precipitation was shown to decrease the overall carbon 
stock in the ecosystem (see Figure 2).

Unexpectedly, the lower precipitation scenario showed 
increased functional diversity – that is, the variety 
of plants present in the community. Importantly, 
this shows that diversity does not always maximize 
ecosystem functioning. Even under conditions where 
plants can adapt, important processes such as carbon 
storage can be negatively affected. In this scenario, 

ecosystem representation, especially in key processes 
such as productivity (e.g. net primary productivity).

CHALLENGES, ADVANCES AND LIMITATIONS
Prior to CAETÊ, trait-based vegetation models did exist. 
Which raises the question: why create another one?  

Most of the ecosystem models available today were 
developed in the context of temperate vegetation. 
Therefore, the representation of tropical and megadiverse 
ecosystems, like in the Amazon, is not accurate enough 
in these models. The development of CAETÊ aims to 
improve the representation of tropical ecosystems, 

there was an increase in plant diversity but a decrease 
in carbon storage capacity due to the reduced plant 
biomass. In short, the greater diversity shown did not 
necessarily improve ecosystem functioning. Effects 
like these exert strong feedback on climate change, 
as the process of carbon sequestration and storage 
is directly related to one of the main climate change 
mitigation mechanisms provided by vegetation: acting 
as carbon sinks.

Furthermore, the greater representation of diversity 
using variant functional strategies, rather than fixed 
functional types, also demonstrated improvements in 

focusing on the Amazon rainforest and its diversity. 
Additionally, the proposal to create a new model offers 
the advantage of training and empowering scientists 
in this nascent field of modelling, especially in Brazil.

However, developing vegetation models presents several 
challenges. Representing nature through computer 
algorithms involves delicate processes, requiring 
precision and a series of complex procedures.

The new era of trait-based model development has 
brought significant advances in the representation of 
megadiverse ecosystems. However, as with any other 
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model, weaknesses and underrepresented processes 
in DVMs are still found. From generalising important 
parameters and characteristics to simplifying processes 
like mortality – especially for hydraulic constraints – and 
growth, the need for model improvement is ongoing. 
For example, defining which traits to use, how to sample 
their values, correlations, and the precise linkage to 
ecophysiological processes still represent challenges for 
both the models and their developers. The understanding 
of these relationships is still new, even in the field of 
functional ecology.

As science develops our understanding of how 
functional aspects affect ecosystem responses, their 
relationship with environmental changes and the 
deep mechanisms of ecosystem functioning, model 
development also continues to improve. It is an ongoing 
effort of advancements, understanding weaknesses and 
seeking improvements.
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Artificial intelligence 
and the environmental 
professions
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Peter Humphrey, Gary Kass 
and Victoria Ward  report on  
a collaborative inquiry exploring 
the promises and perils of this 
technology.

THE POTENTIAL OF ARTIFICIAL INTELLIGENCE
How might artificial intelligence (AI) support progress 
towards environmental improvement and nature 
recovery? How might AI affect the work we do and 
how we do it? How might we engage more widely and 
constructively in how we govern AI? These are just some 
of the questions we are exploring through a collaborative 
inquiry involving Jigsaw Foresight, Natural England, 
The Law Society, a scientific publishing organisation 
and a global pharmaceutical company.1 
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This eclectic group is interested in the implications of 
generative AI (genAI) – a suite of tools such as ChatGPT 
that can generate text, numbers, images, audio and 
video from a few prompts, drawing on vast quantities 
of data. The focus of the collaborative inquiry is on 
the implications of genAI for knowledge professionals 
– those engaged in work grounded in the creation, 
curation, analysis, interpretation and application 
of knowledge in various forms. Within the inquiry, 
perspectives from scientists, lawyers, business managers, 
publishers, educators and innovators are explored.  
Environmental scientists spanning many disciplines 
are involved, sharing their expertise and experience in 
specialist areas and cross-cutting topics ranging from 
monitoring to modelling.

Much has been said about the promises and perils of 
AI: at one extreme, it could save the world; at the other, 
it could wipe out humanity. As ever, these caricatures 
are unhelpful, and the collaborative inquiry is drawing 
out more realistic and practical implications across 
knowledge professions. Issues raised include whether 
the environmental costs of using genAI (in terms of 
carbon and embedded water) might create an ethical 
dilemma over using AI at all – especially for low-level 
and general-use cases, such as carrying out simple 
analytical tasks that only save small amounts of time. 
How can you be sure about the various claims being 
made about the promises and perils of AI in the current 
climate, where it is hard to tell real from false – for 
example, in the use of deep fake imagery – to skew 
debates? How can you tell whether genAI has true 
potential, whether it is just the latest pyramid scheme 
from untrustworthy big tech, or whether the hype is just 
idealistic, magical or apocalyptic thinking?

The inquiry has focused deeply on the human aspects, 
exploring the implications of AI for the work we do, for 
how we act and learn as workers, and for our workplace 
settings. A key issue here is the potential dangers of 
rushing. As we envisage a future that pulls us towards it, 
do we run the risk of not giving ourselves breathing space 
to wonder about the impacts of today’s choices? Have we 
taken the time to notice the effects of genAI on us or on 
how our knowledge-working practices are changing at 
deeper levels?  While we may encourage innovation in AI 
to secure benefits for the environment, are we doing this 
with our eyes wide open? What trade-offs are we making 
and are we innovating responsibly?  Are we aware, for 
example, of the water and energy demand required to 
cool the servers that deliver the AI outputs? Are these 
costs justified by the potential benefits we envisage?

Two critical points are helping to frame the discussion. 
Firstly, we recognise that AI is not a single thing: 
it encompasses a range of tools, techniques and 
applications. This starts with machine and deep-learning 
algorithms and includes everything through to the most 

recent text-to-video genAI applications such as Invideo 
or Synthesia. Secondly, we acknowledge that the range 
and applications of AI are not yet settled – evolution is 
continuing at pace. So what we are talking about in the 
here and now is not the final word. Yet we are having to 
face these issues in the present, learning from the past 
but with an eye on the possible futures.

THE COLLABORATIVE INQUIRY PROCESS
The future is unpredictable, the more so the further 
ahead you look. Therefore, at the heart of this inquiry 
is a foresight process involving a team of researchers 
scanning and searching for articles in newsfeeds, 
foresight resources, online journals and blogs around 
AI technology developments that are pertinent to the 
knowledge professions. Articles are added to a database 
and tagged with the core driver behind the change 
using the PESTLE-V framework (political, economic, 
social, technological, legal, environmental and values). 
Scanning huddles are held as informal idea-sharing 
meetings between selected groups of people to review 
the main articles of interest, share perspectives and 
raise questions. Articles are grouped around ideas 
and concepts based on themes gathered from horizon 
scanning and the research questions, generating a series 
of change cards. 

Change cards are a way to communicate various 
threads of emerging change that are gathered in the 
horizon-scanning stage, often incorporating insights 
from scanning huddles. Each card is given a title that 
sums up an identified emerging change (see Figure 1). 
A repeated format is used for each card with sections 
that explain what it is, how it could change things and 
what could impact this change, providing reference 
material for each topic at the bottom of the card. 
Change cards from this project covered specialised 
topics within environmental science, such as the use 
of digital twins for modelling environments, as well 
as more general themes such as the potential for AI 
technologies to increase the speed of future workplaces. 
In this collaborative project, change cards have proved 
effective in connecting workshop participants with 
the research process and have fostered engagement 
during foresight exercises. They become important 
project artefacts that could be taken beyond the initial 
projects for which they were designed to prompt ongoing 
conversations around change and potential actions that 
may be needed in response.

An online whiteboard is used as a gathering space 
for conversations and ideas generation – a virtual 
campfire around which discussions can evolve. These 
workshops are held with the inquiry collaborators 
and with participants from a variety of backgrounds, 
including operational, strategy, regulatory and 
technical staff. Participants use the ‘futures wheels’ 
foresight tool with different groups, exploring a variety 

 Figure 1. Example of a change card. (© Jigsaw Foresight)

of prompts based on the change cards that describe 
one aspect of a potential future. As an example, the 
prompt for this change card was: AI tools informed by 
micro-sensors monitor the health and welfare of wildlife  
(see Figure 1). Participants then think through the 
different layers of consequences based on the future 
change assigned to them, later exploring other groups’ 
futures wheels to highlight similarities and differences.2 

FROM FORESIGHT TO INSIGHT
The foresight process generates a broad range of insights, 
spanning diverse themes that are shared with project 
members through change cards and bespoke reports. 
Issues may be related to data ownership and accessibility, 
or to bias in the data and how data gaps are handled, 
affecting confidence in the veracity of AI-generated data, 
especially where the data sources used are unknown 
or unclear.

A fascinating issue raised to date has been that of the 
Habsburg Effect, where AI-generated data distort 
future AI models, raising implications for the validity 
of environmental models in all fields – from climate to 
pollution, and from ecology to oceanography – giving an 
erroneous sense of how the environment is changing and 

how it may continue to change.3 Through one exchange, 
it is recognised that if AI models are ‘too good’, it might 
lead to a phenomenon known as social loafing, where 
humans do not bother to question them.4 Instead, they 
approach AI as a black box or truth engine, and take 
its outputs at face value, affecting the credibility and 
legitimacy of decision-making.

Three main themes have emerged from this analysis 
to date.

Power. Issues are emerging related to who has power 
in the system, questioning who the winners and losers 
are in the development and use of AI models, whom 
they benefit and what counts as ‘good AI’. However, 
there is a sense among the collaborators that AI could 
also empower more people and democratise the expert 
space, potentially challenging institutional power. This 
line of inquiry extends into discussions around the 
regulation of AI systems and the various ways that 
human rights could be upheld or ignored as AI models 
are implemented in society and the workplace. Concerns 
are being raised that AI use could increase burnout 
among staff due to the increased speed and quantity 
of information. As AI technology continues to evolve, 
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it is seen as necessary to regularly engage a wide group  
of stakeholders to critically assess and gather  
perspectives on the ground, including from within an 
organisation’s workforce.

Opportunities and threats. There is a lively ongoing 
discussion on a very wide range of opportunities and 
threats, related not only to practical-use cases but also 
to how AI technology is perceived among workers and 
how organisations might be encouraged to become 
more digitally mature. While it is widely recognised 
that the increased scope afforded by AI tools includes 
unlocking more creative work when mundane tasks are 
automated, it is also recognised that the opposite effect 
could arise, where human work shifts from creating 
meaningful impact to merely being ‘factory checkers’ 
and quality controlling the AI outputs (see Table 1). 
The ramifications for expertise feature widely in these 
conversations, raising questions about what knowledge, 
skills and behaviours people would need to develop and 
continue to evolve when working with AI.

Systems complexity. The final theme focuses on the 
implications arising from the complexity of systems 
brought together through AI technology. Here, an 
important emergent point is the potential conflict 
between different AI systems. AI models are not identical 

and each could produce different data and results on 
the same problem or field of research. For example, in 
ecological management, different AI tools could generate 
different outputs related to assessing damage to habitats. 
As such, this could open up a wealth of claims and 
counterclaims about the validity of a particular set of 
findings, perhaps with parties cherry-picking models 
that generate results to suit them. This in turn creates a 
significant threat to the ambition of evidence-informed 
decision-making.

REFLECTIONS AND PROSPECTS
Drawing together the breadth and depth of questions 
emerging and insights being generated through the 
collaborative inquiry, the project team currently sees a 
number of overarching issues.

Framing risks and benefits. Clearly, the use and 
ongoing evolution of AI are opening up a new agenda 
and asking new questions. But it is also worth noting 
some themes familiar from previous technological and 
social disruptions. AI is not a single thing but a plurality 
of concepts and tools and is not inherently good or bad. 
There are many shades of grey between risk and benefit, 
with both intended and unintended consequences. Here, 
the beholder’s eye is critical: one person’s risk may be 
another’s benefit.

 Figure 2. Futures wheels template (© Jigsaw Foresight)
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How these issues are framed, what narratives are told 
and what metaphors are used within them has enormous 
power. It matters not only what is said, but by whom 
and why. The Royal Society’s motto Nullius in verba (take 
nobody’s word for it) reminds us to hone and exercise our 
powers of critical thinking and self-awareness, and not to 
fall into the trap of seeing AI as a truth engine. In seeking 
to use AI to help halt and reverse environmental harm 
in fair and just ways, it is critical that good decisions are 
made and implemented across different integrations of 
AI technology. This requires clarity on what matters; 
acknowledging and attending to the range of different 
values in play; and the appetite for or stance towards 
understanding, agreeing and responding to risk and 
opportunity that different stakeholders may have. Again, 
we cannot assume that everyone thinks and values the 
same things in the same ways. Fostering collaboration to 
seek out and bring to the surface multiple perspectives, 
to collectively anticipate the future and to consider the 
wider system becomes key to setting sound strategies 
and enabling integrated problem solving.5

Innovating responsibly. One key factor is how 
innovation happens. In the context of AI, the collaborative 
inquiry is recognising that innovation is a continuous 
process, not a one-off event, requiring ongoing scrutiny 
and assessment of risks and opportunities. Part of that 
is being clear about the purposes of innovation and 
focusing on what needs to be done, not just on what can 
be done. The inquiry is finding a helpful way to think 
about this through the framework of responsible research 

and innovation based around innovation systems that 
exhibit a culture of continual and iterative anticipation, 
interaction, reflection and response.6 The inquiry 
provides scope for anticipation (through foresight), 
interaction (through participatory and deliberative 
processes) and reflection (through discussion groups 
and working papers). But in the end, this will be effective 
only if those capable of acting can and do respond in 
responsible ways.

Preparing for emerging change. We are still at the 
start of the AI journey. Its evolution continues apace 
and there is no pre-defined path ahead. The Spanish 
poet Antonio Machado put it well when he wrote ‘We 
make the path by walking’.7 While the future of AI is 
unknown, we can anticipate possible changes. Some of 
these may be incremental: we can save time by asking 
genAI to prepare some PowerPoint slides for us. But 
others may truly be transformative – such as using AI 
to identify innovative materials with a significantly 
lower environmental footprint. As we make the path by 
walking, we would do well to travel with our eyes wide 
open. Ensuring that organisations are agile and flexible 
in the face of such rapid and largely unpredictable 
changes is critical to being well-prepared when those 
changes unfold. Futurist Maree Conway pointed out in 
2018 that ‘AI will change the world but it will change 
the world in different ways depending on what else 
happens around it’. The future we will not see is one 
in which everything is exactly the same as it is now, 
except with AI.8

Artificial intelligence capability Opportunity Threat

AIa technology becomes capable of 
mundane, repetitive tasks unpopular 
with most workers.

Human workers are liberated to do 
more meaningful and creative work.

Human workers become quality 
checkers for AI tools’ outputs leading 
to less-rewarding work.

AI tools become primary sources of 
workplace expertise.

Workers have better access to 
information and can upskill quicker.

Human workers are augmented by AI 
co-workers with increased efficiency 
and accuracy.

AI agents work alongside human 
workers in various workplaces.

The detachment of professional 
knowledge from the human experience 
adversely affects quality.

Hybrid teams of humans and AI agents 
disincentivise human workers to work 
to their full potential.

a AI = artificial intelligence 

 Table 1. Opportunities and threats of artificial intelligence tools
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Building, governing and maintaining the infrastructure 
system. While data scientists and computer engineers 
develop increasingly sophisticated technology, we must 
be able to shape those developments in responsible ways 
through effective governance and decision-making. 
It is key that people should have ready access to 
fundamentally useful and reliable technology.

But even as we see better technology we also need 
better humans and more empowering views of humans 
and how we approach the work we do – not just as 
drones waiting to be replaced or to be absorbed by an 
AI algorithm. In the end, AI is human intelligence. If we 
wish to actively shape and use AI to fulfil its promises 
and to avoid its perils, we need to become more active 
in our own learning and development. We need to be 
setting out, teaching and adopting a broad suite of 
competencies, and to be promoting equity and inclusion 
as we shift to a new working paradigm.

Underpinning all this is the need to devise better 
governance: linking needs, knowledge and capabilities 
through a purpose- and values-led approach across 
technical, social and legal issues; embedding traceability 
and accountability; and transforming data and 
information into knowledge and insight. We know 
from bitter experience that, despite our best intentions, 
technology can go wrong and can be used for nefarious 
purposes. As such, the systems we develop to enable 
responsible use of AI need to be resilient, enabling us 
to prepare for shocks and surprises and to counter the 
influence of bad actors intent on harm through deliberate 
actions such as spreading disinformation.

It is worth noting that the emergence of AI has happened 
hard on the heels of a shift to remote working due to 
the pandemic, which means that the longer timelines 

needed for responsible innovation have been lost in the 
turbulence of the recent past. There is merit, therefore, in 
taking the time to look further back and to look further 
forward into a range of possible futures to deepen and 
broaden our appreciation of the context for the choices 
we make today.
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An introduction to 
artificial intelligence 
weather forecasts

Kieran Hunt reveals the ways in 
which technology is tackling the 
complexities of forecasting for 
cheaper and more accurate results.

Humans have a natural affinity for the weather 
and have speculatively predicted it for as long 
as they have observed it. Unfortunately, accurate 

weather forecasts – once we move beyond fail-safe lore 
around red-sky timing or St Swithin’s Day – require 
computers that can ingest current weather conditions 
from global observational networks and evaluate a list 
of complicated differential equations at thousands of 
grid points in order to wind the clock forward.

©  Josef Cink | Adobe Stock

TECHNICAL TECHNICAL



©  perfectmatch | Adobe Stock

THE FIRST WEATHER FORECASTS
It has been a little over a hundred years since the first 
serious effort to do this by hand: it took L.F. Richardson 
six weeks to produce a six-hour weather forecast for 
Central Europe, and it was a catastrophic failure.1  In his 
1922 book, Richardson envisaged a future where 64,000 
human ‘computers’ would manage this task, passing 
endless slips of paper to each other under supervision.2  
Fortunately, the invention of the transistor prevented 
this, and Richardson’s ideas, which were ultimately 
correct, could be automated in a process that came to be 
known as numerical weather prediction (NWP).

This process remained – albeit with many subsequent 
methodological tweaks and improvements – state-of-the 
art in weather forecasting for the next century. Until 
about 18 months ago.

THE RISE OF ARTIFICIAL INTELLIGENCE
The recent, swift rise of artificial intelligence (AI) 
has come about from remarkable and coincidental 
advances in hardware, through the rapid production 
of high-specification graphics processing unit (GPU) 
chips that neural networks run on; software, including 
transformers that drive large language models like 
ChatGPT; and diffusion models that drive image 
generators like Midjourney.

Few areas of research have been immune from AI during 
this revolution, and weather forecasting is no exception. 
But why is AI relevant to weather forecasting? After all, 
we know the equations that govern the fluid motion of 
the atmosphere and we have supercomputers that can 
integrate these equations forward in time with typically 
very high accuracy (despite the common refrain about 
UK rainfall forecasts).

As is usually the case with AI, the answer lies in the data. 
Weather observation networks have global coverage and 
are dense in both space and time. For historical weather, 
these are conveniently blended in a dataset known as a 
reanalysis, which in effect uses a physics-based model 
to fill in the gaps between heterogeneous point-based 
measurements taken at the surface or in the atmosphere 
(e.g. weather stations, weather balloons, research 
aircraft) and asynchronous but broader observations  
from satellites.

The most widely used of these reanalyses, ERA5, 
which was developed by the European Centre for 
Medium-Range Weather Forecasts (ECMWF), has 
an hourly output on a 0.25° (approximately 25 km) 
grid, with 137 atmospheric levels, for each quantity 
of interest (e.g. temperature, humidity, wind speed).3 
Running these numbers comes to about 3 billion data 
points per hour for data that stretch back decades. 
This is a big-data puzzle, perfect for AI models or, as 
they are synonymously known, data-driven models. 

We therefore have all the ingredients necessary – 
hardware, software and an enormous high-quality 
dataset – to make this a potentially workable 
problem for AI. Through recent initiatives such as 
WeatherBench, we now even have a universal set of 
standards through which we can compare relative  
model performance.4

This only explains why we can use AI, not why we 
should. Fortunately for the sake of scientific endeavour, 
NWP models are flawed. They are extremely expensive 
to run, with global 10-day forecasts requiring many 
hours of supercomputer time to compute. This means 
they cannot be run frequently, are (often) carbon 
intensive and are ring-fenced – for instance, only one 
of the world’s top 500 supercomputers is found on 
the African continent, effectively preventing African 
forecasters from running cutting-edge models.5 Yet once 
trained, AI models require only a minuscule fraction 
of these resources to produce a forecast.

NWP models are also limited by their resolution: any 
process that occurs at scales smaller than a single 
grid cell (i.e. 10–20 km) must be parameterised. In 
other words, the accumulated effect of such ‘sub-grid’ 
processes must somehow be estimated for each grid 
cell since they cannot be explicitly resolved. Even in 
high-resolution NWP models, this includes many 
important processes, such as convection, turbulence, 
water phase changes, and the interaction between 
the atmosphere and incoming solar radiation. Many 
parameterisations are heuristic or empirical, requiring 
approximations that lead to forecasting errors.

AI models are not decoupled from this problem, but as 
heuristic solvers they offer an opportunity to improve the 
representation of sub-grid processes beyond the current 
limit of human insight. This begins at the artificial 
neural network (ANN) level (which is synonymous 
with deep learning) and is further refined through 
the specific architectures that current state-of-the-art 
AI models use.

ARTIFICIAL NEURAL NETWORKS
ANNs consist of layers of units that process information 
sequentially. This starts with the input layer in which 
each unit represents an individual feature of the input 
data (e.g. surface temperature at a particular grid point). 
There is then at least one hidden layer, where every 
unit receives input from each of the previous layer’s 
units, adds them in a weighted sum and does a quick 
computation on the final value. This is known as an 
activation. If a network has many hidden layers, then it 
is referred to as deep. Finally, the output layer receives 
input from the last hidden layer and, using the same 
method, converts it into a value or set of values that 
we are interested in (e.g. surface temperature in six 
hours’ time).
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But what are activation functions, and how does the 
model know what weighted sums to use to achieve 
a useful output? Each connection between units in 
neighbouring layers is associated with a weight, and 
each unit in each layer is also associated with a bias. 
Each unit multiplies the outputs from the previous 
layer by their respective weight and adds them together 
with the bias to produce a pre-activation value. If 
the process stopped there and did not include an 
activation function, it would only be able to find linear 
input–output relationships; in other words, it would 
be little more than a glamourised best-fit line. The 
activation functions can take a range of forms, but 
one of the most common in regression tasks, such as 
weather forecasting, is the rectified linear unit – which 
is zero if the input is negative, and equal to the input 
if positive.

All the model has to do is find the right set of weights 
and biases (these are the only things that can change 
during training) in order to get an output as close as 
possible to the right answer. There is a very large body 
of research on the optimal way to find the right set, 
but at its core, it hinges on a premise from high-school 
calculus: the chain rule. Effectively, the model runs and 
produces an answer; we measure how far away it is 

from the truth, then apply the chain rule to determine 
which weights and biases are needed to adjust and by 
how much to get a little closer to the truth.

ANNs are remarkably powerful tools – they can 
approximate any mapping between the input and 
the output. This is a crucial result in machine learning 
theory, known as the universal approximation theorem, 
which states that a neural network with at least one 
hidden layer can approximate any continuous function 
to any desired level of accuracy, given sufficient 
neurons in the hidden layer. However, in weather 
forecasting it is not just the input data themselves that 
are important, but the relationships between them 
in time and space (which can be easily checked by 
looking at the underlying equations). Basic ANNs are 
very poor at using information about these structures, 
and therefore require more advanced architectures.

TRANSFORMERS
Transformers rely on two innovations: embedding 
and attention. Embedding is a way of representing 
something defined by a huge number of data points by 
effectively using a much smaller number of data points 
(the terms dimensionality reduction and latent space 
have similar meanings in this context). For example, 

applied to vision tasks (known as vision transformers), 
where they can learn information about the spatial 
structure of the input. Vision transformers apply a 
special embedding (patch embedding), which encodes 
local regions and their structures in a similar way to 
conventional embedding for words (as in the squirrel 
example). It is this feature that makes them potentially 
very useful for weather forecasting.

GRAPH NEURAL NETWORKS
Graph neural networks (GNNs) comprise nodes (e.g. 
people in a social network), edges (e.g. friendships or 
family relationships in a social network) and features 
(e.g. characteristics of the people in the social network, 
such as age). Like transformers, this information is 
usually embedded, such that the representation of 
each node contains information on the characteristics 
of the node itself, its relationship to its neighbours and 
even the structure of the graph as a whole.

Subsequent layers of the GNN then allow the nodes 
to pass messages to their neighbours and update 
accordingly, much like the units in a conventional 
ANN, except that information about the edges and 
graph structure are also used and distant nodes cannot 
communicate unless it is done across many layers.  

imagine you had an unlabelled photograph of every 
animal species in the UK and you wanted to use a 
computer to find a frog. Rather than writing software 
to look at every pixel to find frog-like structures, it is 
much easier to embed the image and look for green 
animals smaller than six inches with webbed feet and 
protruding eyes.

Attention is a mechanism that allows a model to 
dynamically focus on specific parts of the input data, 
improving its ability to understand relationships 
between different parts of the input. Consider two 
slightly different sentences: ‘the squirrel jumped 
into the pond; it was cold and wet’ and ‘the squirrel 
jumped into the pond; it was running away from a 
cat’. A regular ANN would (incorrectly) treat the ‘it’ 
in the same way in both cases, whereas an attention 
mechanism can learn the context: that it is related to 
the pond in the first instance and to the squirrel in 
the second.

By stacking (often many) transformers together, they 
become powerful context engines that can learn 
complex relationships within the input data. They 
have been most widely used for language tasks (e.g. 
in translation and as chatbots) but have recently been 
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 Figure 1. Maps of 10 m wind speeds (shown as shaded areas) and minimum sea level pressure (shown as contours) at 
00:00 UTC on 2 November 2023 from (a) ERA5 and from forecasts initialised at 00:00 UTC on 31 October 2023 from the (b) 
Integrated Forecasting System high-resolution model and (c–f) artificial intelligence models, as labelled. (Source: Charlton-
Perez et al.14)

In contrast to a transformer, where the structures 
within the input data are learned, a GNN represents 
these structures explicitly. This architecture is 
conveniently analogous to a weather forecast, where 
the weather depends on its local neighbourhood in the 
short term but on the whole globe in the long term.

THE BIG THREE
There were several early efforts to develop a global 
forecasting model using AI.6,7 However, due to hardware 
limitations, these models had much coarser resolutions 
(around 200 km and 600 km between each grid point, 
respectively) than contemporary operational NWP 
models and, therefore, could not resolve many types 
of weather events or beat the skill of conventional 
systems. The problem attracted interest from large 
private sector companies with significant computing 
resources. This led to the emergence of three competing 
models that could leverage the full resolution of the ERA5 
training dataset (at a resolution of 25 km), each showing 
comparable skill to the physics-based market-leading 
forecasting model: ECMWF’s high-resolution (HRES) 
Integrated Forecasting System (IFS).

FOURCASTNET
Released in early 2022 by a team largely led by 
scientists from GPU manufacturer Nvidia, FourCastNet 

was the first AI global forecasting model to pose a 
genuine challenge to state-of-the-art physics-based 
models.8  ‘Four’ stands for Fourier transform, a 
process that converts signals in time and space into 
information about all the different waves needed to 
build that signal, and that is ingeniously used here  
as an embedding.

Put simply, the FourCastNet model encodes the input 
in a patch embedding, runs a Fourier transform, 
applies a conventional ANN, then unpacks the Fourier 
transform and embedding to produce an output. This 
method, in a like-for-like comparison with contemporary 
physics-based models, computes forecasts 45,000 times 
more quickly and with comparable skill.

However, if the model were trained to first predict the 
weather six hours in advance, then to run a 10-day 
forecast, the model’s own output would have to be 
applied a further 39 times, resulting in rapidly growing, 
compounded errors. To mitigate this, the model was 
trained on both six-hour (i.e. running the model once) 
and 12-hour (i.e. running the model again on the six-hour 
output) forecasts. A recent update (FourCastNet v2) 
improves the way the Fourier transform is computed, 
more accurately reflecting the spherical geometry of 
the Earth.

 Figure 2. The effect of training GraphCast on more data. Each coloured line represents GraphCast trained with data 
ending before a different year, from 2018 (blue) to 2021 (purple). The y-axis represents root mean square error (the lower, 
the better) on 2021 test data, for 500 hPa geopotential height (approximately 5,000 m above sea level), compared to 
GraphCast trained before 2018, over a 10-day lead time (x-axis). (Source: Lam et al.10)

PANGU-WEATHER
The second model, Pangu-Weather, was released by 
a team of Huawei scientists about eight months after 
FourCastNet.9 Pangu is the name of a mythological 
Chinese figure, said to have separated the Earth, sky 
and humans, who after death became clouds, rivers, 
lakes, land, the sun and the moon. Pangu-Weather is 
an impressive innovation but does not yet live up to 
its namesake.

Like FourCastNet, the backbone of Pangu-Weather is 
a stack of vision transformers (16 in total) with two 
special adaptations. The first, quite common in vision 
transformers, is shifted window attention; in other 
words, the patches used for embedding in each layer shift 
position in each subsequent layer, allowing information 
to pass more effectively between neighbouring regions. 
The second, unique to Pangu-Weather, is to include 
information about where on the Earth the region 
is directly into the embedding in what is called an 

Earth-specific transformer. To mitigate the accumulation 
of errors by running the model recursively to produce 
long forecasts, the developers trained the model 
separately for a range of lead times between one and 
24 hours, meaning longer lead times need less recursion. 
The developers estimated that Pangu-Weather runs about 
10,000 times faster than the IFS.

GRAPHCAST
GraphCast was released by scientists from Google 
in the summer of 2023. Unlike the other two models, 
GraphCast (and here the hint is in the name) relies on 
GNN architecture rather than on vision transformers.10  
The graphs are six icosahedral meshes (think, roughly, 
a standard football size or, if you are more inclined to 
tabletop games, a 20-sided die) of varying resolution. 
These meshes are allowed to interact with each other 
over the course of 16 layers, and so information can be 
passed between nodes locally (on the finest mesh) or 
globally (on the coarsest mesh).
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OUTLOOK
These AI models often offer forecasting skill that is 
comparable to the best physics-based models, even for 
extreme events (see Figure 1). So what is the advantage 
of this? Perhaps the biggest current advantage is 
speed – producing a 10-day global forecast with the 
IFS takes hours and uses hundreds of supercomputer 
nodes. The same forecast with any of the Big Three 
can be done on a high-spec gaming laptop in about  
two minutes.

This means significantly less carbon produced (about 
12,000 times less, as estimated by the FourCastNet 
developers8); much larger forecasting ensembles (running 
the model many times helps to quantify forecasting 
uncertainty); potentially frees up supercomputer 
resources for other research projects; and opens the 
way for democratising weather forecasting. There are 

other subtle advantages as well. As more historical data 
become available (e.g. through projects like Weather 
Rescue, which seeks to digitise the millions of weather 
records found in old logbooks), more training data can 
be produced and AI models can continue to be improved 
(see Figure 2).11 Conventional NWP models, relying on 
programmed physics, do not have that ability. AI models 
also have advantages when it comes to parameterisations 
and representing unknown variables or processes.

So is this the end of physical models? Well, not quite 
yet. Firstly, one of the great forecasting innovations of 
the last several decades, data assimilation – whereby 
observations and their measurement uncertainties 
are actively fed into and adjust forecasts – is still very 
primitive in AI models. Crucially, this means that AI 
models cannot yet be readily used to produce reanalyses 
(the datasets used to train AI forecasting models) 

 Figure 3. Difference with respect to the Integrated Forecasting System statistics: root mean square error (the lower, 
the better) for temperature at 850 hPa (approximately 1,500 m above sea level) averaged over 1 June–31 August 2023 in the 
northern hemisphere. (Source: European Centre for Medium-Range Weather Forecasts15)
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because, among other issues, these rely heavily on  
data assimilation.

Secondly, any persistent errors (known as biases) 
in the training dataset get baked into the AI model 
– for example, if the reanalysis used for training 
underestimates temperature over the Pennines so, too, 
will the forecasts. Thirdly, AI models are very expensive 
to train – a requirement when new data become 
available. Even then, they immediately suffer from 
non-stationarity: the environment starts to deviate from 
the world the model was trained on. This is not, perhaps, 
an issue with near-term climate change, as the model 
should have a reasonable grasp of thermodynamics. 
However, increasing the amount of concrete covering 
the Earth’s surface changes radiative feedback in a way 
the model cannot anticipate without new training data.

The inexorable and rapid rise of AI means that some 
of these issues are already being tackled in the next 
generation of AI forecasting models (see Figure 3). 

This includes ECMWF’s own Artificial Intelligence 
Forecasting System (ensemble forecasting), Google’s 
GenCast (ensemble forecasting using diffusion models) 
and Fudan University’s FuXi (data assimilation).12,13

AI has effectively won the war with conventional weather 
models. The next frontier? Climate models.
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Lens on the wild: 
innovations in 
wildlife monitoring 
with machine 
learning

Benjamin C. Evans, Marcus 
Rowcliffe, Chris Carbone, Emma L. 
Cartledge, Nida Al-Fulaij, Henrietta 
Pringle, Richard Yarnell, Philip 
A. Stephens, Russell Hill, Kate 
Scott-Gatty, Chloe Hartland and 
Bella Horwood show how applying 
artificial intelligence techniques to 
study hedgehogs can be applied to 
animal research more widely. 

Hedgehogs, one of the UK’s most loved creatures, 
have substantially declined in number over 
the last 50 years.1 The National Hedgehog 

Monitoring Programme (NHMP) has completed its 
pilot year, marking the first milestone of a three-year 
endeavour to better understand the causes of this decline 
and, ultimately, to monitor the status of other wildlife 
populations across the UK.

IMAGE IDENTIFICATION AND LABELLING
The NHMP uses camera traps, small units that 
automatically capture sequences of images akin 
to short video clips when a passive infrared sensor 
detects movement in front of the lens (see Figure 1). 
The programme works in a large and growing number 
of survey areas across the UK, distributing cameras 
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systematically within each site and deploying them at 
each location for around a month, providing a glimpse 
into the life of hedgehogs and other wildlife without 
the need for challenging nocturnal observations by 
people. To turn these glimpses into useful information 
on the size and distribution of wildlife populations, an 
analysis pipeline is being built that draws on tools from 
a unique combination of artificial intelligence, citizen 
science, photogrammetry, data science and statistics.

The NHMP expects to collect millions of images each 
year using camera traps, and the number will continue 
to grow as more survey sites are added. This creates 
the first challenge: to label images that contain animals 
and, if so, which species. For project staff to look at each 
image and create the labels would take an impossible 

amount of time. Harnessing developments in machine 
learning and computer vision using an ensemble of 
models to detect whether sequences of images contain 
animals, deployed alongside citizen science, makes this 
task easier.

Detection models aim to predict the object type and its 
localisation within an image, producing a box around the 
desired object (see Figure 2). The models in use consist 
of the MegaDetector, an open-source generalisable 
detection model trained to detect animals, humans and 
vehicles in camera trap imagery, along with Conservation 
AI, an ongoing endeavour to produce detection models 
with finer-grained classification of image regions 
down to species level.2,3 It has been found that this 
combination can reduce the image sets requiring further 

 Figure 1. A camera trap set up in a forested area to monitor wildlife activity as part of the National Hedgehog 
Monitoring Programme. (© National Hedgehog Monitoring Programme)

processing by up to 70 per cent, saving large amounts 
of annotation time. Both models are accessible with 
user-friendly packages, including CamTrap Detector 
and the Conservation AI web interface.4

APPLICATION OF CITIZEN SCIENCE
After filtering the images to those that contain animals, 
the imagery is made available on the MammalWeb 
platform, a citizen science website dedicated to tagging 
camera trap imagery.5 This platform shows one sequence 
at a time, allowing users to flick between images and 
respond with the species seen. Algorithms are currently 
under development that prioritise the images shown 
to citizen scientists based on the degree of certainty in 
the machine classifications, allowing human spotters 
to correct the sequences that are most likely to be 
misclassified by the machine. Combining machine and 
citizen science techniques in this way capitalises on 
the strengths of each to complete the task rapidly and 
accurately with minimal human labour.

EXTRAPOLATING TO STUDY SPECIFIC SPECIES
Once all images are classified on the MammalWeb 
platform, those containing hedgehogs are exported, 
together with their metadata, in Camtrap DP data format. 
This standard for working with camera trap data has 
been developed over the last two years, providing 
portability and interoperability between platforms and 
tools.6 Until now, many platforms and organisations 

employed their own methods and formats for storing 
camera trap data, hindering collaboration and data 
processing. The camera trap data standard allows for 
a collaborative ecosystem of digital technologies in 
wildlife monitoring projects, with the wider benefits 
of improved data accessibility and the reproducibility 
of published results.

The next step in the pipeline uses the Agouti platform 
to estimate the positions of animals.7 This process 
uses a combination of calibration imagery created at 
the time of camera deployment and a pinhole camera 
model to create a depth map for each image (see Figure 
3). From this, the position of each animal within the 
image can be translated into a real-world position in 
front of the camera. Furthermore, positions across 
sequences of images can be linked together to estimate 
animal speeds.

As the approach is refined, one promising area of research 
is incorporating direct image-to-depth models, which 
are deep-learning models trained to predict a depth map 
directly from an image.8 In principle, it should be possible 
to combine these techniques with an object-detection 
model in a way that greatly reduces the human labour 
required for this task. More work is needed to develop 
and refine this approach so that it becomes fast and 
reliable, with limited human interaction; possible 
solutions for this are currently under evaluation.

 Figure 2. Image of a hedgehog (Erinaceus europaeus) captured as part of the National Hedgehog Monitoring 
Programme, tagged using artificial intelligence. The camera trap detected and identified the hedgehog, highlighting it 
within a green box. (© National Hedgehog Monitoring Programme)
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Finally, the data exported from Agouti are processed 
to estimate animal density, which can then be 
used to evaluate variations across the country in 
response to differences in the environment or in 
management techniques. This is done using the 
random encounter model, a statistical technique for 
estimating the abundance of wildlife from camera 
trap data when individual animals from images 
cannot be identified.9 The method works by using 
a process derived from physical gas modelling to 
extract a density signal from the camera trap rate 
while controlling for confounding factors – in this 
case, the size of the camera detection zone and the 
speed of animal movement, which was generated in 
the previous step. The link from Agouti to analysis 

is again facilitated by using the Camtrap DP data 
standard, making it possible to draw on emerging 
statistical packages that make it easy to generate 
abundance outputs from this form of data.

The NHMP’s use of innovative technologies and public 
engagement is paving the way for more effective 
large-scale wildlife monitoring. By harnessing the power 
of machine learning and citizen science, we can gain 
deeper insights into the processes driving changes in 
hedgehog and other wildlife populations and implement 
better conservation strategies for them. Ensuring these 
technologies are open and accessible to all will be crucial 
to expanding their impact and fostering a collaborative 
approach to wildlife conservation.

 Figure 3. Camera trap image showing the calibration process, a straight pole with markings every 20 cm for building  
a 3D depth map used in the random encounter model for estimating density. (© Zoological Society London)

©  National Hedgehog Monitoring Programme

©  National Hedgehog Monitoring Programme
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Dr Benjamin C. Evans is a postdoctoral researcher at the 
Institute of Zoology at the Zoological Society of London (ZSL) 
and specialises in developing machine-learning methods for 
conservation. He focuses on automating density estimation 
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GET INVOLVED
If you would like to help with this crucial task, 
you can spot hedgehogs and many other wildlife 
species as part of the MammalWeb NHMP project.  
 
Visit www.nhmp.co.uk for more information.

Professor Chris Carbone is a scientist at the Institute of 
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Intelligent Earth: a 
new generation of 
environmental data 
scientists

Philip Stier talks with Bea Gilbert 
and Lucy Rowland about his 
leadership of Intelligent Earth.

© voran | Adobe Stock

In 2024, the University of Oxford launched its 
Intelligent Earth Centre for Doctoral Training (CDT), 
a new centre deploying an innovative approach to 

the PhD experience, with Professor Philip Stier at its 
helm. Stier spoke to environmental SCIENTIST about 
why this interdisciplinary network is necessary to 
support its students in addressing cutting-edge research 
challenges at the intersection of environmental science 
and technology.
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LUCY ROWLAND:
Could you tell us a bit about the impetus behind 
Intelligent Earth, how it got set up and the drivers behind 
its creation?

PHILIP STIER:
I’m a climate physicist myself, and we tend to work 
with climate models, including a lot of satellite datasets, 
observations from aircraft, and observations from all 
kinds of other modalities. As a community, we’ve done 
quite a good job in this area, but we’re increasingly 
limited by our ability to interpret the ever-growing 
data. The datasets are extremely big and extremely 
complex, and we currently use only a tiny fraction of 
the information we’re getting.

I’ve grown into the field of artificial intelligence (AI) 
and machine learning, which is one way to extract 
more information from the data; but it’s also a way to 
understand the data better. You can use these AI and 
machine-learning tools to learn something about the 
data and its structure. That’s my own perspective, but 
it’s true for pretty much all environmental sciences, 

as the field has taken off exponentially. I’ve just come 
back from EGU [European Geosciences Union] recently, 
where our machine-learning AI sessions are exploding. 
We have to get bigger and bigger rooms each time, so 
it’s a really hot topic.

It’s clear that there’s a training need; there’s a lot of 
people who like the idea of using AI but they don’t know 
how to do it, and there’s people who do use it, but don’t 
know how to use it well.1 This is the impetus behind 
Intelligent Earth – we see a real need for students to be 
trained in depth. You see quite a few programmes or 
initiatives where people just take off-the-shelf tools and 
apply them to environmental science questions. While 
that’s a really useful approach for some questions, and 
we don’t criticise that at all, we think students should 
know more about the tools: they need to have a more 
in-depth understanding about the methods they use and, 
ultimately, they should work to improve these methods.

The reason this can be so fruitful is because the datasets 
that we have are so big, and they are so complex that it’s a 
real challenge for AI and machine learning. For example, 

I didn't swap these images round as the arch 
doesn't work in the space so have left a is

we currently have about an exabyte of Earth observations 
data, which is a huge amount of data to train AI models 
on. Conventional AI methods often work on fairly 
small image tiles, which can be a challenge for climate 
applications. Therefore, the AI-based data-analysis tools 
don’t exist so we see this gap as a real development 
cycle: a way to use AI and machine learning to improve 
environmental sciences and speed things up. We don’t 
have a lot of time, and we need to make a lot of progress. 
At the same time, we need to see this development cycle 
as a way to improve AI itself, because we have really 
interesting and complex questions to answer, which is 
what gets our AI colleagues engaged.

BEA GILBERT:
How do you think the CDT programme is going to 
help foster interdisciplinary and systems thinking, and 
connect its researchers to wider issues beyond their 
individual research projects?

PHILIP STIER:
Interdisciplinarity is really baked into the whole setup 
of the CDT. In the EU-funded Marie Skłodowska-Curie 

Innovative Training Network (ITN) iMIRACLI we’ve 
already developed some of these ideas. So we really see 
how it can work: the CDT is intrinsically interdisciplinary.

Every student will be supervised by two academics: 
one specialist in AI or machine learning, and one 
in environmental sciences. Aside from giving the 
students a fantastic training experience, this will also 
get the academics working together, and the best way 
for people to work together is through co-supervision. 
It’s a natural way of collaborating, so each student will 
have an intrinsically interdisciplinary focus. Each 
PhD project will span the full project interface of AI 
in the environmental sector, but it can sit in either 
domain. It can be sitting in biodiversity with machine 
learning involved, or it could be fundamentally AI 
developed with environmental science applications 
involved. It really depends on where the student, and 
their project, lands.

The CDT has five core themes: climate, biodiversity, 
natural hazards, environmental solutions and AI. The 
core AI theme is one of the most important and what 

© Sergii Figurnyi | Adobe Stock
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makes it interesting to AI academics. Many programmes 
just apply off-the-shelf tools to environmental sciences, 
which are typically 20 years old; that doesn’t get my 
colleagues in AI departments excited! But working on 
cutting-edge, emerging technologies does.

In terms of going beyond their individual projects, in 
addition to the dual supervisors, students will also 
have an adviser from one of our non-academic partner 
organisations so they can experience the world outside 
of academia. These advisers come from industry, 
non-governmental organisations (NGOs), conservation 
and research labs. This way, students will also be exposed 
to a much broader set of ideas, such as responsible AI.

Another thing that distinguishes Intelligent Earth from 
other doctoral research centres is that students won’t 
have to decide on their PhD project until the end of year 
one. They will get exposed to many different ideas in 
that first year, and they can then decide what’s most 
interesting to them and set their project parameters at 
the end of that year. It’s a real student-led programme.

LUCY ROWLAND:
What are you hoping to achieve with the CDT in terms 
of equity, diversity and inclusion?

PHILIP STIER:
AI is far too fast-moving. The CDT is really student 
driven, but obviously we have certain things we’d like 
to push. We’re keen on access and equality, diversity 
and inclusion. We have a partnership with the African 
Institute of Mathematical Sciences in South Africa, and 
we want to get students on board from underrepresented 
regions. It’s been challenging within the timeline of the 
first year, but that’s something we’re trying to achieve, 
scientifically.

BEA GILBERT:
What are the benefits for students in developing their 
own projects, as opposed to applying to work on a 
pre-defined project?

PHILIP STIER:
It’s a fine line. We don’t have students in a room being 
told to write their projects and advance the field on 
their own; instead it’s a real interplay between students 
and academics. If, for example, students want to work 
on biodiversity and elephants, we will help them: the 
CDT will link them up with academics working in 
that space from the biology, machine-learning and 
satellite-detection disciplines. This allows students to 
shape the direction of their project and, as academics, 
we learn with them. Basically, the whole PhD is a 
conversation, where ideas evolve and where science 
evolves. We’re just treating students as independent 
researchers from the start rather than as a workforce 
for a particular project.

LUCY ROWLAND:
You mentioned the students will have an external adviser 
from outside academia. What will that relationship 
look like? Are there any expectations for how these 
relationships will develop, or opportunities for external 
placements with these stakeholders?

PHILIP STIER:
All students will have an external partner to advise 
them who will be part of the supervisory team. There 
will be two academics (one environmental, one AI) and 
a partner adviser. How it will work can take various 
forms. There’s some who might want to hold weekly 
meetings online; others might not join weekly meetings 
but will be actively involved through less frequent 
meetings, consultations over email and professional  
development support.

For the external partners, it’s a great opportunity to work 
with brilliant students. Then the idea is that students 
go on secondments to one of the partner organisations, 
typically for three months. The implementation of this 
will vary – we have partners ranging from very small 
NGOs up to big companies – but every student will go 
on secondment. If the partner is directly involved in the 
student’s specific project, they may have some input on 
its direction. Other secondments will expose students 
to topics in the area of AI for the environment that they 
don’t directly see in their PhD, and that way they see 
something different.

BEA GILBERT:
You said at the beginning that there is so much data and 
information now that needs processing. Do you think 
there are any recent technological breakthroughs or 
technology applications that have accelerated the way 
we can tackle climate research?

PHILIP STIER:
Yes, that’s definitely something we’re thinking about 
and working on. I’m currently organising a workshop 
at the 2024 United Nations AI for Good Summit in 
Geneva, addressing the future of climate prediction 
and asking what role AI will play. The landscape is 
quite complicated: AI is very different to what most 
people thought it would be five years ago, so it’s very 
hard to predict. One big element that we’re engaged in 
is ultra-high-resolution models that represent the Earth 
in the right scales.

At the moment, a climate model for the Earth has a 
resolution of around 100 km, which is a key uncertainty, 
in particular, for the representation of clouds that we’re 
working in. But now we have a new generation of models 
where we can do kilometre-scale modelling. But these 
models are so big that they fill the biggest supercomputer, 
and we can only simulate a few decades – not what you 
want in a conventional climate model.
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There’s a lot of thought going into how we can build 
very fast models for machine-learning-based surrogate 
climate models. These already exist for weather 
forecasting, but not at these resolutions. So that’s a 
brand-new development, and the field is moving really 
quickly. At the same time, there’s fantastic satellite 
observations out there at the same scale as these new 
models. Conventionally, satellite observations were 
high-resolution and the models were extremely coarse, 
and we used large-scale averages to evaluate the 
models. Now these satellite observations are both on a 
kilometre-scale, so we can think of entirely new ways 
to use the data since it can be directly compared.

BEA GILBERT:
As researchers, how can you stay on top of the field when 
you don’t know what’s around the corner and things are 
accelerating so quickly? Do you have to relinquish the 
expectation that you’re able to keep up?

PHILIP STIER:
Computer science is such a big field; the area of machine 
learning is so big that it’s virtually impossible for anyone 
to keep on top of anything. And even the standard 
literature searches are virtually impossible: things are 
moving so fast, for example, that the published research 
you might find on an AI topic at the beginning of a 
research project could be out of date by the time you 
come to use it.

I think we’re still trying to figure out how AI and 
machine learning work for environmental applications, 
because it’s going ridiculously fast. I think there’s a 
lot of surprises around the corner, and there will be 
– not only on the pure science side, but also in our 
interaction with science and our interaction with models. 
It’s totally foreseeable that you will soon be able to talk 
to a data-analysis platform, which will tell you the 
probabilities of climate change.
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The most important part of this problem is how to embed 
the communication of uncertainty. Understanding the 
inherent uncertainties and calculation and parameter 
complexities of any model and how to communicate them, 
I think, is the biggest challenge. The weather community 
has made 30 years of progress in communicating these 
difficulties. Originally, people didn’t want probabilistic 
weather forecasting, but it’s very much accepted now. 
It’s harder for the climate science community, however, 
because, typically, climate science communication is 
about global mean temperatures, not necessarily climate 
variability at local scales. The high resolution of these 
new models makes them appear very realistic at small 
scales. Hence, it is much harder to communicate the 
underlying uncertainties.

Philip’s research focuses on clouds, aerosols and radiation, 
constituting the largest uncertainties in our changing climate 
system. His research combines atmospheric modelling with Earth 
observations and machine learning to learn climate physics and 
develop next-generation climate models.
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New members and re-grades

Whatever stage of your career you are 
at, the IES has membership services 
that will help you gain recognition and 
progress to the next level. Members 
come from all areas of the environmental 
sector, wherever their work is 
underpinned by science.Not a member? Time for a 

re-grade?

If your career has progressed recently it could be 
time for a re-grade to reflect your success. 

Re-grading can take place at any time  
of the year. Re-grading from Associate 
to Full Member means that you can apply for 
Chartership. There’s never been a better time 
to take the next step in your career.
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It is time to reinvent 
animal encounters at 
zoos with digital twins

Daniel Pimentel outlines the 
benefits and challenges of the 
next generation of human–
wildlife encounters.

A year ago, a viral video of the Kiwi Encounter 
taken at Zoo Miami in the USA caused outrage 
among animal rights activists.1 In the video, a 

guest was shown heavily petting and holding Pãora 
the kiwi inside the flightless bird’s enclosure. Kiwis 
are nocturnal and ground-dwelling, so this daytime 
petting session imposed incredible stress on the animal. 
Zoo Miami responded by immediately terminating 
the experience. In the months that followed, other 
institutions, like Oregon Zoo, followed suit by placing 
similar experiences on hold indefinitely. Now, a year 
later, what seemed like a temporary fix and fleeting trend 
may be signalling the beginning of the end for a long-
held practice at zoos and aquariums: animal encounters.
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 An augmented reality experience allowing users to interact with a sea turtle hatchling being demoed at Tortuga Music 
Festival (2023). © Danny Pimentel

ANIMAL ENCOUNTERS
Animal encounters have been a staple at zoos and 
aquariums for centuries, and for good reason. 
Psychologically, humans have an innate desire to connect 
with nature and non-human life, a phenomenon known 
as the biophilia hypothesis.2 Biophilia is more than a 
nature-seeking tendency but, rather, is an emotional 
need to affiliate and meaningfully engage with other 
living organisms. Institutions have capitalised on this 
by monetising our desire.

In Australia, you can touch, pat and pose for a photo 
with a wombat for US$15.3 It costs even less for dingoes, 
kangaroos, koalas and emus, at $9 for a 10-minute petting 
session. This adds up and constitutes a significant 
chunk of a zoo’s revenue, helping it pay the bills and 
keep operations afloat, often to the detriment of their 
non-human residents.

The tricky part is that zoos are not exclusively an 
economic enterprise built on the commodification of 
wildlife: they play an important role in biodiversity 
conservation. Revenues help fund the rehabilitation of 
injured animals and restore habitats affected by climate 
change. Such collaborative recovery programmes helped 
save the California condor from the brink of extinction, 
for example. This dichotomy between commodification 
and conservation is, therefore, tough to reconcile.

Experiences like the Kiwi Encounter can harm the 
very creatures that these institutions have pledged 
to protect. Not to mention the fact that animals in 
captivity can suffer from mental deterioration over time, 
a condition known as zoochosis. This can ultimately 
lead to detrimental behavioural responses such as 
self-biting and feather pulling.4 At the same time, 
animal encounters can inspire ecocentric connections to 
wildlife, inspiring awe and contributing to conservation 
outcomes.5 Indeed, scholars have long argued that 
zoos and aquariums, through direct interactions like 
feedings, can enhance nature connectedness – at the 
individual level as well as on a wider scale – and increase 
conservation activities.6

Yet, as someone who has participated in wildlife 
encounters, I recognise we cannot pet our way to 
de-extinction. According to the US Association of Zoos 
and Aquariums, there are 213 zoos and aquariums in 
the USA alone, housing over 800 different species that 
are listed on the International Union for Conservation 
of Nature’s Red List.7,8 That is less than 10 per cent of 
the total number of species accessible at our zoos, so 
encounters with vulnerable species are as inaccessible 
as they are ethically dubious.9

Where do conservation organisations turn to if they 
are unable to facilitate direct wildlife interactions but 
want to continue to bridge human–nature divides via 

the wonder of an encounter? Digital twin technology 
may offer an effective and ethical solution.

DIGITAL TWIN TECHNOLOGY
A digital twin is broadly defined as a computer-generated 
replica of any living (and non-living) entity found in 
the physical world, from people to entire countries.10  
Singapore, for instance, famously unveiled Virtual 
Singapore in 2022, a digital replica of its entire nation.11  
With recent advancements in artificial intelligence (AI) 
and photogrammetry, digital twins are increasingly 
being used to replicate living collections too. The 
Smithsonian Institution, in collaboration with The 
Hydrous – a US-based organisation focused on marine 
stewardship – created over 90 digital twins of coral 
specimens.12 Similarly, the University of Massachusetts’ 
digital life initiative has created digital twins of frogs, 
sharks and sea turtles, among others.13 

A digital twin of a kiwi presented on a screen is no 
different than sending a postcard of Pãora to your family. 
Instead, what if we could allow people to realistically 
interact with a digital twin of Pãora, even feed them, 
from the comfort of their homes? Merging digital twins 
with augmented reality (AR) technology, which can 
embed 3D models into our environments in realistic 
ways, can make that possible and produce an illusory 
sense of social presence, or ‘being with’ the creature.

Is it the real thing? No, but it is surprisingly close. 
AR’s ability for social presence is a major reason why 
it is an effective way of dealing with animal phobias 
through exposure therapy.14 Humans respond to virtual 
animals in AR, physiologically and psychologically, 
like they do in real-world encounters, for better or for 
worse. However, this perceptual similarity may benefit 
conservation efforts.

CREATING DIGITAL TWIN ANIMAL ENCOUNTERS
In 2021, an AR experience was created and tested, 
designed to bring audiences up close and personal with 
threatened wildlife – specifically, oil-slicked African 
penguins.15 In the experience, users were tasked with 
rehabilitating a digital twin of an oil-slicked penguin 
in their kitchen sinks. After more than 60,000 people 
cleaned a (virtual) penguin, the results were promising.16 
People felt that the interaction had actually happened, 
which contributed to human–nature connectedness 
and conservation outcomes. Analysis of survey data 
collected after the experience demonstrated that users 
reported high levels of perceived plausibility (i.e. the 
encounter was believable), as well as social presence 
with the animal. Further analysis showed that these 
factors significantly predicted self-reported connection 
to nature and concern about environmental issues.

In 2023, my collaborator, Dr Sri Kalyanaraman, and I 
published a series of experiments examining interactions 
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with digital twins of sea turtles.17 In one experiment, 
audiences were placed face-to-face with virtual sea 
turtles affected by marine debris and boat strikes. 
Findings demonstrated a strong correlation between 
how physically close participants felt to the virtual sea 
turtles and their intention to donate to their conservation. 
In other words, (virtual) wildlife encounters are not 
only perceptually similar, but they also affect us like 
real ones do.

Zoo Miami’s spokesperson, Ron Magill, has argued that 
in a perfect world zoos would not exist. We must come 
to terms with the reality that modern humans see life 
through a prism of pixels. As such, we should adapt 
our approach to human–wildlife dynamics accordingly, 
and digital twins provide a hybrid solution to satiate 
our desire for such encounters.

Does this mean we do away with zoos if we can fit their 
collection into our pockets? Not entirely. There are clear 
trade-offs and barriers to the strategic use of digital twins 
in this capacity. For one, it is quite difficult and costly to 
animate animal behaviour in a realistic way. As humans, 
we have become adept at simulating bipedal locomotion, 
but accurate animation of non-human species movement 
remains incredibly difficult even with advances in AI 
and motion capture technology. Animators and artists 
regularly share the meticulous steps taken to render 
even a few seconds of animal animations.18

This raises the question of appearance and visual fidelity: 
does a digital twin need to be hyperrealistic to affect 
us meaningfully? The concept of the uncanny valley 
describes a phenomenon where virtual representations 
imperfectly resemble their source, creating a feeling of 

 A virtual reality simulation enabling travel to Antarctica to rehabilitate oil-slicked penguins. © Danny Pimentel

discomfort and unease. The same happens when we 
are faced with a virtual animal that is perceptually not 
natural, or is imperfectly represented.19 In this way, if a 
virtual animal encounter does not feel plausible, it may 
do more harm than good.

Another important concern relates to how interactions 
with digital twins may inform audiences’ expectations 
and subsequent behaviour with wildlife in various 
contexts. Co-creating Project SHELL, the virtual reality 
simulation, required close working with sea turtle 
experts to review the content.20 One scene featured the 
user (in this case a turtle hatchling) being picked up by 
a bystander and taken to shore. While this does happen, 
it was quickly (and correctly) pointed out that this may 
wrongly encourage people to do the same if presented 
with the opportunity. In other words, virtual actions 
may inform physical decision-making, which presents 
a slew of potential issues.

Even if we create digital twins of animals for humans 
to engage with, another important question must be 
asked: who are we to say how either would behave? 
Designers will also have to balance enjoyable play 
experiences with scientific accuracy. If we make wild 
(digital) animals accurately behave like wild animals, 
at best there will not be much of an encounter due to 
their tendency for human avoidance, and at worst there 
may be a virtual attack. Conversely, if we make them 
more approachable and interactive, this creates false 
connectedness at the expense of proper expectations 
and boundaries.

Despite these considerations, the promise of digital 
twins is evident from environmental education and 
wildlife conservation standpoints. It reduces the strain 
on animals while providing a safe and memorable 
interaction for audiences. But how do we initiate a culture 
change and motivate zoos and aquariums to embrace the 

© Florida Museum | Photo by Kristen Grace

 Screenshots from the Snapchat Lens “Penguin Rescue!”. © Danny Pimentel
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synthetic in an otherwise wholly organic environment? 
Put simply, to make this a reality, zoos need to invest in 
digital twins. Currently, Portland’s Oregon Zoo does not 
use digital twins, but it can be a pioneer in this space. 
Indeed, very few US zoos and aquariums are leveraging 
this technology for public engagement.

Yet it is not a matter of if, but when. With the buzz 
of Apple’s Vision Pro AR headset still lingering, the 
feasibility of using AR to facilitate human–wildlife 
interactions at scale is growing, and institutions need 

to meet this opportunity head-on.21 In many ways, 
the long-term preservation of Earth’s biodiversity  
depends on it.

Dr Daniel Pimentel is an Assistant Professor of Immersive 
Media Psychology at the University of Oregon’s School of 
Journalism and Communications. As co-director of the Oregon 
Reality Lab, he studies the pro-environmental implications of 
augmented/virtual reality. He is also an OpEd Project Fellow at 
Yale’s Program on Climate Change Communication.
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Cathy Mulligan examines how 
technology can help us measure 
and meet environmental goals 
more effectively.

Blockchain is distinctive among emerging 
technologies due to the strong, polarised 
reactions it evokes in those who are aware of it. 

Many are only aware of blockchain in the context of 
cryptocurrency, as this is what receives the most news 
coverage, yet it has so many more applications.

Enthusiasts propose that blockchain can be a solution to 
everything from wealth disparity to meeting each of the 
17 United Nations’ sustainable development goals (SDGs). 
Detractors view blockchain – and cryptocurrency in 
particular – as a scam, as damaging to the environment 
and unnecessary. The reality, as with most things, is 
more nuanced.

A new imperative to proactively engage with 
environmental impacts and the resulting regulations has 
emerged alongside the usual technology debates. There 
have been numerous evolutions in the conversations 
around digital technologies and sustainability. If the 
world wishes to achieve its environmental aims, it is 
helpful to understand how well the technical solutions 
being produced match the aims of emerging policies. If 
they do not, such solutions are not particularly useful.

The unbearable 
lightness of 
blockchain

The results of our recent study, reviewing 10,800 research 
papers over five years, are less than encouraging but offer 
valuable pointers for successfully integrating blockchain 
to help solve the world’s most complex environmental 
problems.1 In the transdisciplinary space of regulation, 
it is worth starting with a definition.
 
WHAT IS BLOCKCHAIN?
Blockchain technology is a decentralised, immutable 
ledger system that records transactions across a network 
of computers in a way that ensures data are secure, 
transparent and tamper-proof. Each transaction is 
grouped into a block, and these blocks are linked 
together in a chronological chain. Once recorded, the 
data in any given block cannot be easily altered without 
altering all subsequent blocks, which requires consensus 
from the wider network. This structure ensures the 
integrity and reliability of the recorded information. 
It ensures transparency, security and trust without the 
need for intermediaries.

Cryptocurrency, a digital or virtual currency that utilises 
cryptography for security, operates on blockchain 
networks as a medium of exchange or ‘currency’.  

ANALYSIS ANALYSIS
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BOX 1. DEFINITIONS

Regulators with responsibility for environmental, 
social and corporate governance:

•  ESMA: European Securities and Markets Authority
•  ISSB: International Sustainability Standards Board
•  SEC: Securities and Exchange Commission
•  GRI: Global Reporting Initiative
•  TCFD: Task Force on Climate-related Financial 

Disclosures
•  ESRS: European Sustainability Reporting Standards
•  IFRS S1 and S2: International Financial Reporting 

Standards Sustainability Disclosure Standards 1 and 2
•  CSRD: Corporate Sustainability Reporting Directive

It enables peer-to-peer transactions and borderless 
financial transfers. It has often been touted as a solution 
for financial inclusion, revolutionising conventional 
banking systems and fostering innovation in industries 
beyond currency exchange. 

Within environmental protection, some of the most 
common examples of blockchain’s benefits include:

•  Creating more transparent supply chains by enabling 
tracking, verifying product origins, and ensuring 
sustainability and ethical sourcing within agriculture, 
energy networks and construction;

•  Carbon footprint tracking, where blockchain facilitates 
accurate measurement and monitoring of carbon 
emissions, aiding offsetting and trading; and

•  Conservation funding and accountability, where 
blockchain-based crowdfunding platforms are used 
for environmental projects, ensuring transparency 
and accountability in fund allocation.

EMERGING REGULATION FOR SUSTAINABILITY
Governments and regulators now require disclosure 
around environmental, social and corporate governance 
(ESG) in regulated documents such as annual reports in 
order to inform investors of ESG risks and opportunities. 
This shift from voluntary to mandatory reporting aims 
to provide more complete and standardised information, 
addressing previous dissatisfaction among investors.

However, global regulators vary in their approaches 
to mandating ESG-specific financial reporting. Many 
regulations have been released, all with direct or 
tangential implications for solutions implanted with 
digital technologies. While none discuss blockchain 
directly, any proposed solutions need to consider these 
policies. The ESG regulatory environment includes a 
variety of regulators (see Box 1).

Many solutions also refer to the SDGs as an impetus for 
claiming environmental or social good from blockchain.

It is also relevant, therefore, to look at the SDGs in the 
context of solving global environmental problems. 
Currently, using blockchain for sustainability purposes 
falls into two main areas: measuring environmental 
impact and using blockchain as part of a solution to an 
environmental problem.

MEASURING THE IMPACT OF BLOCKCHAIN
There has been a lot of discussion about blockchain’s 
environmental impact, with various claims about how 
much energy it consumes and how much electronic 
waste it produces versus how much good it can 
deliver. One of the main problems identified with 
existing attempts to measure this impact is the lack 
of comparable, peer-reviewed methods, as well as 
the disparity in the estimates produced, which vary 

widely. Most research methods have been funded by 
parts of the cryptocurrency industry or published in 
low-quality journals with unreliable peer reviews. 
As a result, none can be considered academically 
robust. However, it is essential to note that the 
same issues also occur in efforts to measure the 
environmental impact of the internet, cloud computing 
and artificial intelligence (AI) systems – including 
energy consumption, electronic waste generation, 
resource depletion, water usage, carbon emissions, 
pollution and biodiversity loss throughout their life 
cycle from production to disposal. 

Blockchain solutions are especially prone to discussions 
regarding environmental impact. Unlike other digital 
technologies, such as AI or Internet of Things (IoT) 
solutions, the environmental externalities of blockchain 
– and cryptocurrency applications in particular – are 
fully available for everyone to see because the nodes 
are publicly available.

This network information transparency allows anyone 
worldwide to download and analyse the data, enabling 
more educated estimates of the technology’s level of 
environmental impact. Therefore, it often receives an 
unfair comparison to more conventional technologies 
such as cloud computing. However, companies such 
as Microsoft, Amazon, Google and Meta refer to such 
data about their installations as confidential and claim 
that sharing it with researchers is a possible security 
risk. As such, there is significantly less insight into 
how their systems work and, subsequently, into their 
environmental impact.

Overall, we need a solid approach to measuring the 
environmental impact of digital technologies so that we 

BOX 2. BLOCKCHAIN APPLICATIONS

The following is a list of blockchain applications in relation to the Sustainable Development Goals. 

Sustainable 
Development Goal

Goal description Blockchain application

1 No poverty Financial inclusion, fair trade

2 Zero hunger Supply chain transparency, fair trade

3 Good health and well-being Medical records, pharmaceutical supply chain

4 Quality education Credential verification

5 Gender equality Financial independence, identity verification

6 Clean water and sanitation Water management

7 Affordable and clean energy Energy trading

8 Decent work and economic growth Transparent labour practices

9 Industry, innovation and infrastructure Smart contracts

10 Reduced inequality Remittances

11 Sustainable cities and communities Property rights

12 Responsible consumption and production Sustainable supply chains

13 Climate action Carbon credits

14 Life below water Fisheries management

15 Life on land Forest conservation

16 Peace, justice and strong institutions Anti-corruption

17 Partnerships for the goals Data sharing and collaboration

can make educated decisions about which technologies 
to use and where. Currently, we are unable to effectively 
compare different technical solutions.

BLOCKCHAIN AS AN ENVIRONMENTAL SOLUTION
Many of the projects reviewed in the study investigated 
how to use blockchain to solve various environmental 
problems. Most of these projects focus on energy systems, 
supply chains, construction and agriculture, as well as the 
use of blockchain in traceability solutions, such as ensuring 
data from IoT sensors are not tampered with in smart city, 
construction or healthcare applications. Alternatively, 
these projects are proposed in order to create peer-to-peer 
trading systems in energy and agriculture. Another 
area is using tokens in cryptocurrencies to develop new 
market solutions – for example, around carbon markets. 
These solutions often attempt to solve a perceived market 
failure by creating new financial incentives for companies 
or individuals to do the right thing.

Blockchain’s role in sustainability primarily focuses 
on three areas: energy systems, supply chains and IoT 
solutions, such as smart cities, facilitating peer-to-peer 
energy trading and enhancing grid efficiency.2,3 Another 
significant focus is agricultural traceability, improving 

crop maintenance through blockchain-enabled IoT 
devices.4 Similarly, literature on construction and 
smart cities proposes solutions for data integrity, smart 
buildings and smart construction.5,6 Additionally, 
healthcare solutions primarily target electronic health 
records, while sustainable supply chains are also a key 
area of interest.7,8

Many of these projects that formed part of the review, 
however, are not directly aimed at solving the problems 
defined by policy-makers as relevant to achieving net 
zero. There is a startling lack of coordination between 
projects – with many re-creating the same solution 
repeatedly, with only slight changes in implementation. 
As a result, the potential to solve problems at scale is lost. 
One area that should be improved is the connectivity 
between those proposed blockchain-based solutions 
and those who fully understand environmental impact.

For those projects proposing new incentives to solve 
environmental problems, a key issue seems to be 
understanding the nature of market failures in the 
first place. The use of incentives may work in some 
instances but, as any policy-maker will know, merely 
incentivising something does not mean it will work. 
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The reason we have taxes and public services such as 
the NHS is about a lot more than providing the right 
incentives to overcome market failure.

ARE WE USING THE RIGHT MEASURES?
Another critical question is whether the SDGs are a good 
tool to direct blockchain efforts. Firstly, blockchains 
are not implemented in isolation; they often support 
other technologies such as AI, IoT or 5G, making it more 
complex to measure the direct impact of blockchain on the 
different areas of an SDG. Secondly, there are 231 unique 
SDG indicators, and the way in which they are developed 
and implemented makes it difficult to measure them all 
effectively. Furthermore, SDGs are set at a national level, 

so a small-scale solution using blockchain is unlikely to 
deliver against the SDG indicators.

Lastly, with the focus of SDGs being on developing nations, 
there is a risk that the work required to mitigate climate 
change in the developed world is missed. Since most of the 
adverse environmental impacts originate in the developed 
world, the SDGs risk misplacing the focus necessary to solve 
these problems. As a result, many blockchain solutions that 
claim to address the SDGs are not directly doing so but 
often use them as advertising. To solve these issues, there 
should be greater focus and direction from policy-makers 
so that blockchain-solution innovators understand where 
they can make the greatest impact.
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However, one of the most common aspects that is 
excluded from the discussions around blockchain is 
the environmental impact of the churn of computing 
equipment. Blockchain installations (and, indeed, cloud 
computing) rely heavily on high-speed chipsets. These 
components are often replaced far quicker than the 
suggested lifespan due to the constant hunt for higher 
speeds. Older chips are discarded when a new one is 
released, leading to large amounts of unnecessary 
electronic waste. One of the critical things we must 
focus on is how to effectively recycle and reuse chipsets 
and other core components of technical solutions. 
Precious metals from this waste are often considered 
to be in such small quantities that they are not worth 
recycling properly, and this perspective needs to 
change rapidly. This is an area that is as yet wholly 
unaddressed by the technology industry – and by 
blockchain solutions in particular.

THE WAY FORWARD
Blockchain does have a role to play in delivering 
sustainability, and it can deliver useful aspects of a 
solution related to trust in data sources and possibly even 
new methods of coordination in the economy. However, 
any claim that blockchain alone can meet the SDGs or 
enable ESG goals needs to illustrate how the proposed 
solution meets the policy requirements it claims to 
address. Moreover, blockchain cannot be implemented 
independently and understanding its connection to 
other technologies is critical when proposing solutions. 
Therefore, the focus should be on creating frameworks 
and tools that enable measurement of the entire life 
cycle of solutions, not just individual technologies such 
as blockchain or AI.
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Alexandra Karamitrou  looks at 
how this technology can be used 
to better understand and protect 
heritage sites and their marine 
environment. 

Shipwrecks can be both beneficial and harmful to 
marine ecosystems. While they create habitats for 
marine life, they can also lead to pollution and 

disrupt the balance of the underwater environment. In 
remote coral reef areas where iron levels are naturally 
low, these shipwreck remnants disrupt the normal life of 
the reef, changing the biology and the chemistry of the 
area, making it easier for invasive species such as turf 
algae, cyanobacterial mats, macroalgae, corallimorphs 
and other benthic bacterial communities to take over. 
As a result, the surrounding water might change colour, 
leading to what are known as black reefs – so called 
because of the noticeable discoloration caused by the 
shipwreck’s impact on the underwater environment 
(see Figure 1).1,2 

Unlocking the secrets 
of shipwrecks: artificial 
intelligence’s role in 
coral reef conservation
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70 | environmental SCIENTIST |  June 2024 June 2024  | environmental SCIENTIST | 71

CASE STUDY CASE STUDY



By using artificial intelligence (AI) and high-resolution 
satellite images, such as those from Google Earth, 
these wrecks can be monitored more effectively to 
understand their impact on the surrounding area, 
even if they are not easily visible. This research  
offers new insights into how we can use technology to 
safeguard our underwater heritage while preserving 
marine ecosystems.

A LIMITED NUMBER OF BLACK REEFS
Since there are only a few known black reefs in coral 
areas and not all of them are visible in satellite imagery 
(due to low spatial resolution or high cloud coverage), 
and free imagery is not available for all reefs, eight sites 
were selected from existing research that comprised a 
total of 19 shipwrecks. Seven of those shipwrecks were 

used to label and train the algorithm and 12 were used 
to evaluate its performance (see Figure 2).

The dataset included four Vision-1 multispectral images 
(red, green, and blue channels) with a resolution of 3.5 m, 
provided free of charge by Jisc.4 Additionally, the dataset 
comprised seven Google Earth images (red, green, and 
blue channels) of varying resolutions depending on the 
sensor type and the year of acquisition.

WORKING WITH ARTIFICIAL INTELLIGENCE
Deep learning is an AI technique that uses artificial 
neural networks, modelled after the human brain’s 
structure and function. Over the past decade, deep 
learning has revolutionised research in computer vision, 
leading to its widespread adoption.

 Figure 1. Kenn Reef, nestled within the Coral Sea Islands of the Australian Commonwealth Territories, boasts 11 
documented shipwreck sites along its shores. The magnifying glass zooms in to illustrate a shipwreck and the black reef 
surrounding it within this region. (Source: Karamitrou et al.3)

Convolutional neural networks (or space-invariant 
artificial neural networks) typically require large 
amounts of data to perform well during the training 
process. Currently, there is a shortage of publicly available 
labelled data for shipwrecks, making it challenging to 
train neural networks effectively. To overcome this, 
a supervised neural network called SimpleNet was 
used, which is based on the architecture of semantic 
segmentation.5,6  Semantic segmentation algorithms 
divide images into meaningful segments and then 
classify each segment into one of several predetermined 
classes. For example, these classes could include 
archaeological sites, regions of vegetation, modern 
structures and other interpretable image regions. This 
model is well suited for situations with limited labelled 
data because it avoids using complex layers that require 
a lot of memory and computing power. This approach 
makes it easier to work with smaller datasets and still 
achieve accurate results.

To train the algorithm, five reefs were used – Kenn, 
Nikumamoro, Kanton, Rose and Kingman – resulting 
in about 1,600 images. These images were classified 

into three categories: black reefs (areas with known 
shipwrecks that caused discoloration); non-black reefs 
(other reef areas without discoloration); and water (areas 
with water but no reef). To save time and computational 
memory when training the algorithm, the Iridis 
supercomputer at the University of Southampton was 
used, providing access to high-performance computing. 
These computers use clusters of powerful processors 
that work in parallel to process vast amounts of data, 
providing results at high speeds. The entire process 
took approximately two hours to complete.

DETECTING SHIPWRECKS
In all the cases studied, the trained algorithm was able 
to clearly distinguish between water and land, even 
in areas where the seabed was visible. The algorithm 
accurately identified all known black reef locations and, 
consequently, all known shipwreck locations.

Kenn Reef. Notably, the algorithm identified a black reef 
area several hundred metres to the north of this known 
reef, which could either indicate previously unknown 
shipwrecks or a misidentification (see Figure 3). 

 Figure 2. Locations of the black reefs investigated in this study. (Source: Karamitrou et al.3)
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 Figure 3. a) Vision-1 satellite image capturing Kenn Reef, using red dots to indicate the location of the 11 known 
shipwrecks; b) the segmented image after the trained algorithm has been applied; c) zoomed-in part of the Google Earth 
image providing a closer look at the reef; and d) the corresponding zoomed-in portion of the segmented image. The khaki 
colour represents areas classified as black reef by the algorithm, the light-blue colour indicates the remaining reef and the 
grey colour represents water. (Source: Karamitrou et al.3)

 Figure 4. Left column: All the accessible Google Earth images of the Kwajalein Atoll from 2005, 2013, 2015, 2016, 2019 
and 2022, with the shipwreck’s location marked by the red rectangle. Right column: The respective segmented images 
where the khaki colour represents areas classified as black reef by the algorithm, the light-blue colour indicates the 
remaining reef and the grey colour represents water. (Source: Karamitrou et al.3)

visibly spread several hundred metres further inland 
(see Figure 5).

RESEARCH FINDINGS IMPLICATIONS
This research highlights the effectiveness of combining 
remote sensing, AI and ground-based surveys to identify 
and monitor the environmental effects of shipwrecks on 
coral reefs. The results demonstrate that AI algorithms 
can reliably detect black reefs, signalling the presence of 
shipwrecks, even when they are not visible. By analysing 
temporal data, it is observed that the formation of black 
reefs may initially be delayed but which accelerates 
as the shipwreck degrades over time. Additionally, 
environmental elements such as wind, ocean currents 
and waves play a role in dispersing debris, which 
gradually widens the affected area.

Detecting shipwrecks is crucial not only for their 
archaeological significance but also because they 
can pose substantial risks to marine environments.  

Additionally, the discovery of discoloration along the 
coastal area suggests that wind, ocean currents and waves 
can carry debris from shipwrecks to nearby parts of the 
reef. This emphasises the importance of considering 
temporal information when monitoring and evaluating 
environmental impacts, particularly due to the rapid 
changes in coastal and marine environments.

Kwajalein Atoll. Initially, the presence of a Second World 
War shipwreck on the atoll shore did not automatically 
confirm the development of a black reef, as there was no 
existing research indicating its presence. However, upon 
examining temporal information, the trained algorithm 
confirmed the formation of a black reef (see Figure 4). 
This highlights that as a shipwreck deteriorates over 
time, it accelerates the black reef formation process.

By comparing the state of the shipwreck in 2005 to that 
in 2019, it becomes evident that the vessel has broken 
into smaller pieces. Some of these fragments have 
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Toxic or hazardous materials leaking from shipwrecks 
can be catastrophic for marine ecosystems, human life, 
and local economies and societies. Even in cases where 
such materials are absent, the contamination of coral 
reefs with high amounts of iron from the vessels can 
significantly threaten them by forming black reefs.

Alexandra Karamitrou, PhD, MSc, is a geophysicist with a 
background in geology and environmental science. Her research 
is focused on the application of AI to solve complex social 
and cultural problems. She is currently using multiple datasets, 
such as remotely sensed and geophysical data, as well as 
environmental information to detect submerged shipwrecks. 
She is applying computer vision and image processing 
techniques combined with deep-learning, convolutional neural 
networks to automatically identify and classify human-made 
islets, also known as crannogs. Alexandra is also studying global 
decommissioning practices of offshore structures including 
vessels, oil rigs and wind turbines, funded by the Royal Academy 
of Engineering.
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Drone technology  
for monitoring  
in the water sector

Mónica Rivas Casado provides 
an overview of a range of 
applications of unoccupied aerial 
vehicles in the industry.

ASSET INSPECTION IN THE WATER SECTOR
In the last few decades there has been a significant 
uptake of emerging and disruptive technologies for 
environmental surveying tasks. Unoccupied aerial 
vehicles (UAVs), commonly known as drones, are an 
example of such technologies.

The water sector, and wastewater treatment in particular, 
has embraced such technologies by maximising their 
use in a wide range of applications – from inspection 
tasks to greenhouse gas emissions quantification and 
reporting. In wastewater treatment plants, drones have 
enabled operators to better understand the management 
needs of their assets. 
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For example, UAVs autonomously deployed from 
a remote platform and coupled with image analysis 
techniques could be used to identify failures in trickling 
filters (see Figure 1) and activated sludge facilities (see 
Figure 2), where the biological processes of secondary 
treatment take place.1

Inspection and maintenance of such assets using 
conventional techniques (e.g. visiting each plant and 
visually assessing each asset) is time consuming and 
costly, with failures usually associated with a lack of 
uniform irrigation of wastewater from trickling filter 
rotor arms. Solids separation, bulking, foaming and 
aeration malfunctions are common failure points for 
activated sludge facilities. Such facilities inject air into 
tanks to promote microbial growth, and suspended 
solids are then separated through sedimentation.

UAVs equipped with off-the-shelf RGB (red, green, 
blue light channels) cameras enable the collection of 
high-resolution imagery. The colour of the pixels of 
each individual frame provides substantial detail about 
the operational performance of the asset (see Figure 3). 
Briefly, water coming out of the trickling filter, as well as 

the air bubbles in the activated sludge facilities, presents 
as a different (lighter) colour to that observed in the 
background. Image classification algorithms can detect 
this colour difference by comparing the colorimetric 
characteristics of each pixel to a predetermined range 
of colours established as reference values for water. 
Anything outside those established reference values 
is considered not to be water. The ratio of water over 
no-water pixels is then calculated. Variations of this ratio 
with respect to the optimal performance ratio highlights 
possible failure or a change in asset performance.1 This 
technological advancement, when combined with the 
autonomous deployment of UAVs, enables the remote 
inspection of assets and minimises the frequency 
with which operators carry out plant visits and visual 
inspections.

Others have used UAVs to quantify methane emissions 
from anaerobic digesters, secondary storage tanks and 
cake pads.2 In this instance, the UAV platform was 
equipped with a low-weight (520 g) tuneable diode laser 
absorption spectroscopy sensor (TDLAS) with a detection 
limit of 5 parts-per-million-metre (ppm.m), a measuring 
range of 0–50,000 ppm.m and a maximum detection 

 Figure 1. High-resolution imagery of a trickling filter collected using an unoccupied aerial vehicle. Trickling filters are common 
assets found in wastewater treatment plants. (© Severn Trent Water)

distance of 100 m.3 TDLASs collect path-integrated 
concentrations (i.e. the concentration of methane present 
along a column of gas), which can then be used to 
calculate methane flux (i.e. the rate of methane flowing 
across a given area) using mass balance algorithms.4 The 
mass balance approach relies on the principle that the net 
flux can be estimated by quantifying the difference in the 
mass of methane entering and leaving a predetermined  
atmospheric volume.

SUCCESSFUL DRONE USE IN THE WATER SECTOR
The uptake of UAVs within the water sector is the result 
of a combination of factors – including on-demand and 
in-situ deployment capability, increased spatial coverage, 
reduced operational costs, de-risked operations and 
higher data resolution – compared to more conventional 
surveying methods that rely on visual assessments. 
The technology has enabled a shift in management 
practices from wastewater plant level to asset-specific 
interventions.

Perhaps this is most noticeable within the context of 
methane emissions quantification and management, 
where reporting practices to date have relied on 

plant-level estimates. Wastewater treatment plant 
operators follow the methodology described in the 
Carbon Accounting Workbook to report greenhouse 
gas emissions.5 The method relies on default emissions 
factors, a coefficient describing the rate at which 
greenhouse gases are released to atmosphere, to estimate 
overall methane fluxes at plant level. These estimations 
are based on the volumes of sludge treated as well as on 
the type of treatment employed and provide a general 
overview of the magnitude of the observed emissions.

It is well understood that emissions factors are 
asset-specific. For example, assets such as the anaerobic 
digesters or pipes within a wastewater treatment plant 
– which are enclosed – will be characterised by fugitive 
emissions, which occur at discrete points. Digestate 
storage tanks will present a completely different pattern, 
as they are open and will directly release methane to 
the atmosphere.

Emissions factors depend on multiple parameters, such 
as environmental temperature, atmospheric pressure 
and relative humidity, in addition to the operational and 
technical characteristics of the assets.6 There is also a 
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 Figure 2. High-resolution imagery of an activated sludge facility using an unoccupied aerial vehicle. (© Severn Trent Water)

need to differentiate between emissions from open and 
fugitive sources, as described above. High-resolution 
methane concentration data collected with TDLASs 
embedded in UAV platforms enable the estimation of 
asset-specific emissions factors and, therefore, offer a 
pathway to enhancing current greenhouse gas emissions 
reporting practices.

There is evidence that state-of-the-art technologies for 
methane concentration measurement provide different 
but more accurate readings than conventional methods.2 
The high-resolution wide-area coverage offered by UAVs 
provides incredibly detailed concentration readings 
and derived flux estimations. However, the extent to 
which UAVs can improve reporting practices has not 
yet been assessed quantitatively. There is an urgent 
need to better understand how differences in surveying 
technologies translate into greenhouse gas emissions 
estimations. There is a risk of underestimating emissions 
from wastewater treatment processes if the effectiveness 
of current surveying approaches is not revised.

ACCOMMODATING NEW TECHNOLOGIES
The uptake of emerging and disruptive technologies 
needs to be thoughtfully aligned with surveying 
solutions already adopted by the water sector, such 
as ground-based sensors, thermal imaging cameras 
and GHGSat (a constellation of satellites measuring 
methane and carbon dioxide emissions from point 
sources) high-resolution satellite imagery (see Figure 4).7  
Other emerging technologies recognised as significant 
by governments (e.g. the Internet of Things, satellites, 
big data, and robotics and autonomous systems) will 
play a crucial role in future developments.8 

This in turn requires the adoption of data collection 
and data processing practices that facilitate the fusion 
of information from a varied range of sources, as well 
as the development of algorithms for the rapid detection 
of patterns in data. Where comparison of outcomes 
across wastewater treatment plants is sought, more strict 
protocols or standards explicitly describing the precision 
and accuracy of the thresholds of tolerance will also 

 Figure 3. Results of an activated sludge facility high-resolution image processed using the algorithms developed by 
Sancho et al.1
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be required. Early-warning systems that report peaks 
of emissions as well as frameworks to better inform 
management decisions can be devised when all these 
distinct factors converge into a single solution.

THE SKILLS DEFICIT CHALLENGE
The use of UAVs in the water sector, and more widely in 
the environmental sector, could be significantly curtailed 
by the availability of skilled engineers required to operate 
the UAV platforms. The logistics around operating UAVs 
require specific licences and permissions that ensure 
all missions are conducted in compliance with airspace 
regulations. Similarly, data science knowledge is needed 
to process and interpret the data collected, which are 
usually provided in a wide range of formats.

The water sector will have to sustain a constant stream 
of investment to develop and train multidisciplinary 
teams of operators to use the technology for its intended 
purpose. How successful the uptake of emerging 
technologies is within the environmental and water 

sectors depends on the ability of governments and 
organisations to devise strategies that promote social 
acceptance and adaptation. The development of such 
approaches will also require dedicated resources on 
their successful implementation through mechanisms 
such as policy and regulatory frameworks, guidelines 
and standards.9 

 

 Figure 4. GHGSat satellite imagery reporting greenhouse gas emissions from a wastewater treatment plant. (© GHGSat)
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Digital environmental 
impact assessment: 
from evolution to 
revolution

Mark Elton reflects on how far 
practitioners have come and 
why developments in artificial 
intelligence will bring about 
rapid progress.

ENVIRONMENTAL IMPACT ASSESSMENT HISTORY
An environmental impact assessment (EIA) is a 
process through which the environmental impacts of 
a proposed development are assessed. EIA is undertaken 
in more than a hundred countries and has been a 
legal requirement in the UK since 1988 through the 
EIA Directive (85/337/EC).1 In the past 36 years of UK 
EIA practice, survey techniques, impact assessment 
methodologies and software tools have been digitised, 
standardised and updated.

ANALYSIS ANALYSIS

©  James Thew | Adobe Stock



 Figure 1. Environmental impact assessment process diagram. Note: a EIA: environmental impact assessment
b ES: environmental statement
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Environmental statements – the reports setting out the 
findings of an EIA – have expanded from the narrow, 
focused, short documents they started out as in the 
early 1990s to become multivolume, lengthy (some 
may say impenetrable) series of documents in the first 
decade of the 2000s. Today, they are modern online 
reports and maps, with a narrower focus. However, the 
environmental statement format and structure remains 
recognisable, with the main stages of the EIA process 
being fundamentally unchanged (see Figure 1).

Advances have been made since, adding hyperlinks to 
figures within Word documents and using geographic 
information system (GIS) tools for data surveys and 
mapping. The EIA practitioner community has come 
together and undertaken some excellent research 
exploring the benefits of a truly digital EIA process – for 
developers, consultants and the public. For example, 
an Innovate UK-funded report highlighted several key 
priorities, including a national environmental data hub, 
digital EIA workspace, and interactive and accessible 
environmental statements.2 

BOX 1. DIGITAL ENVIRONMENTAL IMPACT 
ASSESSMENTS

The benefits of digital environmental impact 
assessments include:

•  More efficient decision-making in the planning and 
design process;

•  Transparency in the visualisation of and access to 
project-specific spatial data;

•  Enabling standardisation of data collection and 
potential for artificial intelligence application and 
machine learning;

•  Effective integration of project phasing and multiple 
data sources;

•  Ability to assess impacts (positive and negative) 
earlier and to consider multiple scenarios in the EIA 
process;

•  Streamlining and driving efficiencies through multi-
stakeholder collaboration;

•  Maximising stakeholder communication and public 
engagement; and

•  Use of digital platforms to train and manage the 
project team resources in line with best practice in 
the industry and in other sectors and countries.

However, there has been some frustration with the pace 
of change and implementation – especially when the 
benefits appear so obvious and attractive (see Box 1). 
So why has progress been limited?

Should developers pay for digital innovation when a 
standard PDF version of an environmental statement 
meets regulations and satisfies the information needs 
of planning authorities? Tools and software innovation 
have led to some progress, individual environmental 
consultancies have developed and promoted their own 
digital EIA platforms, web versions of non-technical 
summaries are more common but, in reality, more than 
90 per cent of all environmental statements remain in 
PDF format.

WHY IS PROGRESS SO SLOW?
The ‘if it is not broken why fix it' mentality has led 
to a generic approach to EIA, despite the continuous 
best efforts of industry leaders, the IES, the Institute 
of Environmental Management and Assessment, 
focus groups and environmental consultancies to 
drive change. However, the consensus is that artificial 
intelligence (AI) will dramatically transform the way 
we manage, analyse and present environmental data  
(see Figure 2). With or without changes to the EIA regime 
– in light of the potential move towards Environmental 
Outcomes Reports or a new UK Government approach 
to streamlining the planning process – are we about to 
see a revolution in digital EIA?

For EIA consultants, AI already has the potential to 
automate routine tasks, analyse massive datasets, detect 
patterns and trends, and make predictions at a speed 
and scale beyond human capability. A revolution in 
digital EIA embracing generative AI could be imminent, 
and with it comes the ability to drive change in both 
environmental protection and strategic planning 
decision-making (see Figure 2).

COLLECTING THE DATA
Baseline environmental planning data are key to an 
effective digital EIA process. There needs to be a level 
of transparency, collaboration and standardisation 
across the industry to ensure data are both accessible 
to all involved in the planning process and up to date. 
Defra’s MAGIC website, launched in 2002, pioneered 
this approach and currently has over 400 datasets 
from partners including the Environment Agency and 
Historic England.3 At present, it is the closest thing to 
a national environmental data hub.

The digital planning programme from the Department 
for Levelling Up, Housing and Communities has 
been supporting local planning authorities through 
funding and partnering with technology providers to  
develop innovative digital planning tools focused 
on efficiency and accessibility of planning data.4 
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 Figure 2. Transformative artificial intelligence. (© GHD) 
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To facilitate this, users have access to live planning 
datasets, either at national (e.g. map of planning 
data for England) or city scales, such as London’s 
Planning London Datamap.5,6 Both have information 
on when the data were last updated to maintain  
data quality.

What is still missing is the collation of all the 
environmental survey and assessment data collected 
during the EIA process for new proposed developments. 
For ecology, some data are saved and reported back via 
local environmental records centres. For example, ecology 
survey data in London can be submitted to the Greenspace 
Information for Greater London Community Interest 
Company, London’s environmental records centre, and 
accessed by other consultants or the public. But this is not 
automated; it relies on ecological consultants submitting 
project data, combined with casual and ad hoc wildlife 
sightings and reporting from the public.7 

Environmental consultants working on digital EIAs 
have a responsibility to collate information from across 
the industry, to agree on standards for data collection 
and templates, and to take a shared approach to formats 

that ensure environmental statements are machine 
readable and that the survey data are not locked away 
in PDF chapters and appendices. AI has the potential to 
transform the current approach to data collection and 
management. Tools like ChatGPT and Microsoft Copilot 
already enable users to instantly summarise any report 
or document. The next step would be the ability to 
collate specific datasets from environmental statements 
and to provide the information in a far more accessible 
form. However, this still requires human review and 
editing to ensure consistency of methodologies and 
that the datasets are comparable.

The use of drone and AI sensors, remote sensing 
technologies for habitat mapping and monitoring 
together with automated report summaries, and the 
collation of data from multiple sources are expected 
to be standard practice in the consultancy sector in 
the next 12 months. There are already examples of 
‘sensors incorporating artificial intelligence algorithms 
to analyse and interpret data in real time, providing 
valuable insights into complex environmental systems’.8  
If all mitigation measures outlined in published 
environmental statements for a specific area or type of 

 Figure 3. GHD Digital Assessment Solutions platform. (© GHD)
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project could be collated, combined with ‘live’ baseline 
data and monitoring, and reviewed in the context of 
initial plans for other new development proposals, 
in theory, AI could provide instant indicative EIA 
Screening and Scoping reports for any new proposal. 
While these would still need to be reviewed by 
consultants, it would be a useful starting point.

DIGITAL WORKSPACE
GIS is and has always been central to a successful digital 
EIA process. It plays a part in all aspects of the process 
and is built into most digital EIA platforms already in 
use. GIS is at the heart of GHD’s Digital Assessment 
Solution (see Figure 3). This example of a digital EIA 
workspace has been developed to enable a project 
team to collaborate efficiently, all accessing the same 
spatial project data – the ‘single source of truth’ for a 
development. It is currently being trialled on projects in 
the UK and internationally. Other digital EIA platforms 
include those by other consultancies such as Arcadis, 
Jacobs, WSP (Wood) and AECOM.

Overall, digital EIA platforms are primarily of interest 
to EIA coordinators and the technical and project 
teams involved in a specific proposed development. 
They provide the potential to cover all stages of the 
EIA process – from screening and scoping through to 
monitoring mitigation measures (see Figure 1). External 
access to the platform enables collaboration with multiple 
technical teams and allows planners, clients and other 
stakeholders to review spatial data and modelling 
results during the assessment process. The impacts 
of any scheme design or red line boundary changes 
are instantly reflected on the platform and relevant 
technical teams are notified to review and update their 
assessment as required.

Many consultants utilise a SharePoint-style platform 
approach, which also allows for the incorporation of 
links to other software programs and tools. In this 
way, the EIA can be effectively project managed and 
coordinated with full access by the project team to 
all project data, GIS mapping and technical reports. 

Ultimately the information can be published on a website 
for stakeholders and the public to access the EIA findings 
and non-technical summary.

DIGITAL ENVIRONMENTAL STATEMENTS
More effective stakeholder engagement is often cited as 
the main benefit of digital EIA. It can be argued that, on 
the one hand, we are still constrained by the planning 
process and need for PDF documents to be issued to a 
local planning authority; whereas, on the other hand, 
we already have the tools and techniques in place to 
present environmental statements digitally – online and 
in a much more accessible and interactive way.

An environmental statement, once submitted as part 
of a planning application, is a public document and, in 
theory, available online. A local authority’s planning 
portal provides online access to any submitted 
environmental statement; however, these portals are 
often difficult to navigate, especially those without 
mapping or effective topic-specific search functions. 
Even when you do find the planning application of 
interest, you still have to search through a long list 
of PDF chapters, which for the general public still 
makes the environmental statement inaccessible.

Where a proposed development has a project website, 
there is an opportunity to present the environmental 
statement, its technical assessment chapters (e.g. 
noise, air quality, ecology) and the EIA conclusions 
in an interactive and accessible format. This enables 
the EIA findings to be directed to various readers, 
from regulatory bodies and statutory consultees to 
community groups and the public. Most EIA consultants 
are already utilising the accessible Environmental 

Systems Research Institute’s ArcGIS StoryMaps tools to 
present this information – including maps, 3D scenes 
and multimedia content.9  Even if it is only done for the 
non-technical summary, it is a definite improvement 
on a PDF report.

The A303 Stonehenge Scheme – proposing to tunnel 
a section of the A303 as it passes by Stonehenge – was 
one of the first examples of a digital EIA website using 
ArcGIS StoryMaps to present the assessment findings 
in 2019. The Crossrail 2 project, before being paused in 
2020, was intended to be the first fully digital EIA.10,11

The EIA process could benefit from recent innovations in 
the virtual reality presentation of data and 3D modelling. 
Virtual reality headsets are increasingly used to present 
project design in an immersive way at consultation 
events. Tools such as Mission Room, which supplies 
whole-room-based interactive and immersive displays 
to reach a wider audience, can assist in increasing 
engagement with the EIA process, especially when 
combined with more conventional tools such as public 
events and community newsletters.12

3D ENVIRONMENTAL IMPACT ASSESSMENT
Visualising the environmental baseline and assessment 
data in a 3D model or digital twin would allow the 
project team, planners and public to review the potential 
impacts through a fully interactive and timeline-based 
tool. For example, a resident may want to know how 
peak air quality and noise impacts during construction 
would affect them. Meanwhile, the nearby school would 
like to see the cumulative impact of traffic levels for a 
proposed development, combined with projected noise 
and air quality levels.
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VU.CITY has been at the forefront of creating accurate 
and interactive 3D models of UK cities for architects, 
planners and developers to visualise and assess potential 
new developments (see Figure 4).13 The value of such 
3D city models was demonstrated with an interactive 
virtual reality digital twin of London’s Square Mile, 
launched in 2020.14 This model enabled planning 
pre-application discussions and stakeholder engagement 
to be undertaken using virtual reality to walk around 
and view the proposals for a new development in the 
City of London.

3D models have been used to assess and present potential 
impacts of new developments on, for instance, daylight 
and sunlight levels, wind conditions, townscape and 
visual effects, and noise levels. Presenting in 3D gives 
users the ability to view the potential effects from above 
and at street level. The technology also has the potential 
to combine data layers for multiple planning applications 
and to present cumulative environmental impacts in a 
transformational way.

THE FUTURE
Digital EIA techniques and tools have been slowly 
evolving over the past decade and practitioners have 
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embraced ways to make the process more interactive 
and collaborative. However, AI provides an opportunity 
to truly transform the EIA process. What is considered 
a complex interaction of environmental, economic 
and social factors that many find inaccessible will be 
unrecognisable in the next five years. AI will enhance our 
ability to manage and process environmental data and 
once integrated into EIA assessment and presentation 
it will revolutionise the whole process.
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 Figure 4. VU.CITY 3D model of Birmingham. (© VU.CITY)
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